Evaluate \( \sqrt[3]{343}+\frac{3}{4} \sqrt[3]{-8} \) \( 8 \frac{1}{2} \) \( -5 \frac{1}{2} \) \( -\frac{1}{2} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To evaluate the expression \( \sqrt[3]{343}+\frac{3}{4} \sqrt[3]{-8} \): 1. Calculate \( \sqrt[3]{343} \): \[ \sqrt[3]{343} = 7 \quad \text{(since \( 7 \times 7 \times 7 = 343 \))} \] 2. Calculate \( \sqrt[3]{-8} \): \[ \sqrt[3]{-8} = -2 \quad \text{(since \( -2 \times -2 \times -2 = -8 \))} \] 3. Now substitute these values back into the original expression: \[ 7 + \frac{3}{4} \times (-2) \] 4. Calculate \( \frac{3}{4} \times (-2) \): \[ \frac{3}{4} \times (-2) = -\frac{3 \times 2}{4} = -\frac{6}{4} = -\frac{3}{2} \] 5. Now the expression becomes: \[ 7 - \frac{3}{2} \] 6. Convert 7 into a fraction with a denominator of 2: \[ 7 = \frac{14}{2} \] 7. Now subtract: \[ \frac{14}{2} - \frac{3}{2} = \frac{14 - 3}{2} = \frac{11}{2} \] Thus, the final answer is: \[ \frac{11}{2} \quad \text{or} \quad 5 \frac{1}{2} \] None of the provided options \(8 \frac{1}{2}\), \(-5 \frac{1}{2}\), and \(-\frac{1}{2}\) are correct. The correct answer is \(5 \frac{1}{2}\).