Question
upstudy study bank question image url

19. \( 15+|2 x+3| \leq 24 \)

Ask by Best Salazar. in Mexico
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución de la desigualdad \( 15 + |2x + 3| \leq 24 \) es \( x \) entre -6 y 3, incluyendo ambos extremos.

Solution

Para resolver la desigualdad \( 15 + |2x + 3| \leq 24 \), seguimos estos pasos: 1. **Restar 15 de ambos lados**: \[ |2x + 3| \leq 24 - 15 \] Esto simplifica a: \[ |2x + 3| \leq 9 \] 2. **Resolver la desigualdad de valor absoluto**: La desigualdad \( |A| \leq B \) se traduce en dos desigualdades: \[ -B \leq A \leq B \] En nuestro caso, esto se convierte en: \[ -9 \leq 2x + 3 \leq 9 \] 3. **Descomponer en dos desigualdades**: - Para la parte izquierda: \[ -9 \leq 2x + 3 \] Restamos 3 de ambos lados: \[ -9 - 3 \leq 2x \] \[ -12 \leq 2x \] Dividimos entre 2: \[ -6 \leq x \quad \text{o} \quad x \geq -6 \] - Para la parte derecha: \[ 2x + 3 \leq 9 \] Restamos 3 de ambos lados: \[ 2x \leq 9 - 3 \] \[ 2x \leq 6 \] Dividimos entre 2: \[ x \leq 3 \] 4. **Combinar las soluciones**: Juntando ambas partes, tenemos: \[ -6 \leq x \leq 3 \] Por lo tanto, la solución de la desigualdad \( 15 + |2x + 3| \leq 24 \) es: \[ x \in [-6, 3] \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve \( 15 + |2x + 3| \leq 24 \), first, subtract 15 from both sides to isolate the absolute value: \[ |2x + 3| \leq 9. \] This leads to two possible cases: 1. \( 2x + 3 \leq 9 \) 2. \( 2x + 3 \geq -9 \) Solving these, we get: 1. From \( 2x + 3 \leq 9 \) we find \( 2x \leq 6 \) or \( x \leq 3 \). 2. From \( 2x + 3 \geq -9 \) we find \( 2x \geq -12 \) or \( x \geq -6 \). Thus, the solution to the inequality is \( -6 \leq x \leq 3 \). To visualize this, you can imagine a number line with two important points, -6 and 3, where you would shade the section between them, including the endpoints, indicating all values of \( x \) that satisfy your inequality. Such tools can help solidify the understanding that absolute values can create these "gaps" where we need to consider both positive and negative outcomes.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy