Question
upstudy study bank question image url

4.2. \( \frac{1}{\sqrt{2}}=4^{x-1} \)

Ask by Nunez Olson. in Portugal
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

A solução da equação é \( x = \frac{3}{4} \).

Solution

Para resolver a equação   1/√2 = 4^(x - 1) podemos proceder da seguinte forma: 1. Escreva 1/√2 em termos de potência de 2. Como √2 = 2^(1/2), temos:   1/√2 = 2^(–1/2). 2. Note que 4 pode ser escrito como 2². Assim:   4^(x – 1) = (2²)^(x – 1) = 2^(2(x – 1)). 3. Agora, a equação fica:   2^(–1/2) = 2^(2(x – 1)). 4. Como as bases são iguais (2), podemos igualar os expoentes:   –1/2 = 2(x – 1). 5. Resolva a equação para x:   x – 1 = –1/4 ⟹ x = 1 – 1/4 = 3/4. Portanto, a solução da equação é x = 3/4.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To tackle the equation \( \frac{1}{\sqrt{2}}=4^{x-1} \), we can start by rewriting \( 4 \) as \( 2^2 \). Therefore, we can express \( 4^{x-1} \) as \( (2^2)^{x-1} = 2^{2(x-1)} \). Now our equation looks like: \[ \frac{1}{\sqrt{2}} = 2^{2(x-1)} \] Next, we recognize that \( \frac{1}{\sqrt{2}} = 2^{-1/2} \). This lets us rewrite the equation as: \[ 2^{-1/2} = 2^{2(x-1)} \] Since the bases are the same, we can set the exponents equal to each other: \[ -\frac{1}{2} = 2(x - 1) \] Now, solving for \( x \) involves simplifying further: 1. Distributing the \( 2 \): \[ -\frac{1}{2} = 2x - 2 \] 2. Adding \( 2 \) to both sides: \[ \frac{3}{2} = 2x \] 3. Dividing by \( 2 \) gives: \[ x = \frac{3}{4} \] Thus, the solution to the equation is \( x = \frac{3}{4} \).

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy