Question
upstudy study bank question image url

Factor the leading coefficient from each expression. \( \begin{array}{ll}\text { 29. } \frac{1}{3} a+\frac{5}{3}=\frac{1}{3}(\square) & \text { 30. } \frac{1}{5} x-\frac{2}{5}=\frac{1}{5}(\square)\end{array} \)

Ask by Griffiths Rodriquez. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

29. \( \frac{1}{3}(a + 5) \) 30. \( \frac{1}{5}(x - 2) \)

Solution

To factor the leading coefficient from each expression, we’ll factor out the fraction from all terms. 29. For (1/3)a + (5/3), the common factor is 1/3. Factoring 1/3 from each term gives:   1/3 · [a + 5] 30. For (1/5)x − (2/5), the common factor is 1/5. Factoring 1/5 from each term gives:   1/5 · [x − 2] Thus, the answers are: 29. 1/3(a + 5) 30. 1/5(x − 2)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To factor the leading coefficient from the first expression, we can take \( \frac{1}{3} \) out of the expression: \[ \frac{1}{3} a + \frac{5}{3} = \frac{1}{3} \left( a + 5 \right) \] For the second expression, we do the same: \[ \frac{1}{5} x - \frac{2}{5} = \frac{1}{5} \left( x - 2 \right) \] So, the final factored forms are: 29. \( \frac{1}{3}(a + 5) \) 30. \( \frac{1}{5}(x - 2) \)

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy