Question
upstudy study bank question image url

a) \( -\frac{3}{2} \cdot\left(-\frac{5}{3}\right)+\frac{2}{3} \cdot\left(-\frac{1}{2}\right)-\frac{4}{3}:\left(\frac{9}{2}\right) \)

Ask by Lewis Love. in Argentina
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El resultado es \( \frac{101}{54} \) o aproximadamente \( 1.8703 \).

Solution

Calculate the value by following steps: - step0: Calculate: \(-\frac{3}{2}\left(-\frac{5}{3}\right)+\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{4}{3}\div \frac{9}{2}\) - step1: Multiply the numbers: \(\frac{5}{2}+\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{4}{3}\div \frac{9}{2}\) - step2: Multiply the numbers: \(\frac{5}{2}-\frac{1}{3}-\frac{4}{3}\div \frac{9}{2}\) - step3: Divide the terms: \(\frac{5}{2}-\frac{1}{3}-\frac{8}{27}\) - step4: Reduce fractions to a common denominator: \(\frac{5\times 3\times 9}{2\times 3\times 9}-\frac{2\times 9}{3\times 2\times 9}-\frac{8\times 2}{27\times 2}\) - step5: Multiply the terms: \(\frac{5\times 3\times 9}{54}-\frac{2\times 9}{3\times 2\times 9}-\frac{8\times 2}{27\times 2}\) - step6: Multiply the terms: \(\frac{5\times 3\times 9}{54}-\frac{2\times 9}{54}-\frac{8\times 2}{27\times 2}\) - step7: Multiply the numbers: \(\frac{5\times 3\times 9}{54}-\frac{2\times 9}{54}-\frac{8\times 2}{54}\) - step8: Transform the expression: \(\frac{5\times 3\times 9-2\times 9-8\times 2}{54}\) - step9: Multiply the terms: \(\frac{135-2\times 9-8\times 2}{54}\) - step10: Multiply the numbers: \(\frac{135-18-8\times 2}{54}\) - step11: Multiply the numbers: \(\frac{135-18-16}{54}\) - step12: Subtract the numbers: \(\frac{101}{54}\) Para resolver la expresión \( -\frac{3}{2} \cdot\left(-\frac{5}{3}\right)+\frac{2}{3} \cdot\left(-\frac{1}{2}\right)-\frac{4}{3}:\left(\frac{9}{2}\right) \), procederemos paso a paso: 1. **Multiplicación de fracciones**: - Primero, calculamos \( -\frac{3}{2} \cdot\left(-\frac{5}{3}\right) \): \[ -\frac{3}{2} \cdot\left(-\frac{5}{3}\right) = \frac{3 \cdot 5}{2 \cdot 3} = \frac{15}{6} = \frac{5}{2} \] 2. **Multiplicación de fracciones**: - Luego, calculamos \( \frac{2}{3} \cdot\left(-\frac{1}{2}\right) \): \[ \frac{2}{3} \cdot\left(-\frac{1}{2}\right) = -\frac{2 \cdot 1}{3 \cdot 2} = -\frac{1}{3} \] 3. **División de fracciones**: - Ahora, calculamos \( -\frac{4}{3}:\left(\frac{9}{2}\right) \): \[ -\frac{4}{3}:\left(\frac{9}{2}\right) = -\frac{4}{3} \cdot \frac{2}{9} = -\frac{8}{27} \] 4. **Suma de los resultados**: - Ahora sumamos los resultados obtenidos: \[ \frac{5}{2} - \frac{1}{3} - \frac{8}{27} \] Para sumar estas fracciones, necesitamos un denominador común. El mínimo común múltiplo de \(2\), \(3\) y \(27\) es \(54\). - Convertimos cada fracción: \[ \frac{5}{2} = \frac{5 \cdot 27}{2 \cdot 27} = \frac{135}{54} \] \[ -\frac{1}{3} = -\frac{1 \cdot 18}{3 \cdot 18} = -\frac{18}{54} \] \[ -\frac{8}{27} = -\frac{8 \cdot 2}{27 \cdot 2} = -\frac{16}{54} \] - Sumamos las fracciones: \[ \frac{135}{54} - \frac{18}{54} - \frac{16}{54} = \frac{135 - 18 - 16}{54} = \frac{101}{54} \] Por lo tanto, el resultado final es: \[ \frac{101}{54} \quad \text{o en forma decimal: } 1.8\dot{7}0\dot{3} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve the expression \( -\frac{3}{2} \cdot\left(-\frac{5}{3}\right)+\frac{2}{3} \cdot\left(-\frac{1}{2}\right)-\frac{4}{3}:\left(\frac{9}{2}\right) \), we first break it down into parts. 1. **Multiply** \( -\frac{3}{2} \cdot\left(-\frac{5}{3}\right) = \frac{3}{2} \cdot \frac{5}{3} = \frac{15}{6} = \frac{5}{2} \). 2. **Multiply** \( \frac{2}{3} \cdot\left(-\frac{1}{2}\right) = -\frac{2}{6} = -\frac{1}{3} \). 3. **Divide** \( -\frac{4}{3}:\left(\frac{9}{2}\right) = -\frac{4}{3} \cdot \frac{2}{9} = -\frac{8}{27} \). Now, we combine all parts: \[ \frac{5}{2} - \frac{1}{3} - \left(-\frac{8}{27}\right) \] To combine these fractions, we need a common denominator. The least common multiple of 2, 3, and 27 is 54. We convert each fraction: - \( \frac{5}{2} = \frac{5 \cdot 27}{54} = \frac{135}{54} \) - \( -\frac{1}{3} = -\frac{1 \cdot 18}{54} = -\frac{18}{54} \) - \( -\left(-\frac{8}{27}\right) = \frac{8 \cdot 2}{54} = \frac{16}{54} \) Now, we combine these: \[ \frac{135}{54} - \frac{18}{54} + \frac{16}{54} = \frac{135 - 18 + 16}{54} = \frac{133}{54} \] Thus, the final answer is: \[ \frac{133}{54} \]

Related Questions

Latest Arithmetic Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy