Question
upstudy study bank question image url

T)(NG) Obtain the first three non-zero terms in the Maclaurin expansion of \( x \ln (2+x) \). Hence, or otherwise, deduce the first three non-zero terms in the Maclaurin expansion of \( x \ln (2-x) \). Hence obtain the first two non-zero terms in the Maclaurin expansion of \( x \ln \left(4-x^{2}\right) \). \( [T h r o u g h o u t ~ t h i s ~ q u e s t i o n, ~ i t ~ c a n ~ b e ~ a s s u m e d ~ t h a t ~ \) [Th \( 2
Ask by Herrera Klein. in the United Kingdom
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

First three non-zero terms in \( x \ln(2+x) \): \( \ln(2)x + \frac{1}{2}x^2 - \frac{1}{12}x^3 \) First three non-zero terms in \( x \ln(2-x) \): \( \ln(2)x - \frac{1}{2}x^2 - \frac{1}{8}x^3 \) First two non-zero terms in \( x \ln(4-x^2) \): \( \ln(4)x - \frac{1}{4}x^3 \)

Solution

To solve the problem, we will follow these steps: 1. **Find the Maclaurin expansion of \( x \ln(2+x) \)**. 2. **Deduce the Maclaurin expansion of \( x \ln(2-x) \)** from the previous result. 3. **Obtain the Maclaurin expansion of \( x \ln(4-x^2) \)** using the results from steps 1 and 2. ### Step 1: Maclaurin Expansion of \( x \ln(2+x) \) The Maclaurin series expansion of a function \( f(x) \) is given by: \[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \ldots \] Let's define \( f(x) = x \ln(2+x) \). #### Calculate \( f(0) \): \[ f(0) = 0 \cdot \ln(2+0) = 0 \] #### Calculate \( f'(x) \): Using the product rule: \[ f'(x) = \ln(2+x) + x \cdot \frac{1}{2+x} \] Now, evaluate \( f'(0) \): \[ f'(0) = \ln(2+0) + 0 \cdot \frac{1}{2+0} = \ln(2) \] #### Calculate \( f''(x) \): Differentiate \( f'(x) \): \[ f''(x) = \frac{1}{2+x} + \left( \frac{1}{2+x} - \frac{x}{(2+x)^2} \right) \] Now, evaluate \( f''(0) \): \[ f''(0) = \frac{1}{2+0} + \left( \frac{1}{2+0} - \frac{0}{(2+0)^2} \right) = \frac{1}{2} + \frac{1}{2} = 1 \] #### Calculate \( f'''(x) \): Differentiate \( f''(x) \): \[ f'''(x) = -\frac{1}{(2+x)^2} + \left( -\frac{1}{(2+x)^2} + \frac{2x}{(2+x)^3} \right) \] Now, evaluate \( f'''(0) \): \[ f'''(0) = -\frac{1}{(2+0)^2} + \left( -\frac{1}{(2+0)^2} + 0 \right) = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2} \] #### Construct the Maclaurin series: Now we can construct the series: \[ f(x) = 0 + \ln(2)x + \frac{1}{2} \cdot x^2 - \frac{1}{12} x^3 + \ldots \] Thus, the first three non-zero terms in the Maclaurin expansion of \( x \ln(2+x) \) are: \[ \ln(2)x + \frac{1}{2}x^2 - \frac{1}{12}x^3 \] ### Step 2: Deduce the Maclaurin Expansion of \( x \ln(2-x) \) Using the fact that \( \ln(2-x) = \ln(2) + \ln(1 - \frac{x}{2}) \), we can expand \( \ln(1 - u) \) where \( u = \frac{x}{2} \): \[ \ln(1 - u) = -\left( \frac{x}{2} + \frac{1}{2} \left( \frac{x}{2} \right)^2 + \frac{1}{3} \left( \frac{x}{2} \right)^3 + \ldots \right) \] Thus, \[ \ln(2-x) = \ln(2) - \left( \frac{x}{2} + \frac{x^2}{8} + \frac{x^3}{24} + \ldots \right) \] Now, multiplying by \( x \): \[ x \ln(2-x) = x \ln(2) - \left( \frac{x^2}{2} + \frac{x^3}{8} + \frac{x^4}{24} + \ldots \right) \] The first three non-zero terms in the Maclaurin expansion of \( x \ln(2-x) \) are: \[ \ln(2)x - \frac{1}{2}x^2 - \frac{1}{8}x^3 \] ### Step 3: Maclaurin Expansion of \( x \ln(4-x^2) \) Using the identity \( \ln(4-x^2) = \ln(4) + \ln(1 - \frac{x^2}{4}) \): \[ \ln(1 - u) = -\left( u + \frac{u^2}{2} + \frac{u^3}{3} + \ldots \right) \] where \( u = \frac{x^2}{4} \): \[ \ln(1 - \frac{x^2}{4}) = -\left( \frac{x^2}{4} + \frac{1}{2} \left( \frac{x^2}{4} \right)^2 + \ldots \right) \] Thus, \[ \ln(4-x^2) = \ln(4) - \left( \frac{x^2}{4} + \frac{x^4}{32} + \ldots \right) \] Now, multiplying by \( x \): \[ x \ln(4-x^2) = x \ln(4) - \frac{x^3}{4} - \frac{x^5}{32} - \ldots \] The first two non-zero terms in the Maclaurin expansion of \( x \ln(4-x^2) \) are: \[ \ln(4)x - \frac{1}{4}x^3 \] ### Summary of Results 1. First three non-zero terms in \( x \ln(2+x) \): \( \ln(2)x + \frac{1}{2}x^2 - \frac{1}{12}x^3 \) 2. First three non-zero terms in \( x \ln(2-x) \): \( \ln(2)x - \frac{1}{2}x^2 - \frac{1}{8}x^3 \) 3. First two non-zero terms in \( x \

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To find the first three non-zero terms in the Maclaurin expansion of \( x \ln(2+x) \), we start with the Taylor series expansion of \( \ln(1 + u) \) around \( u = 0 \), which is \( u - \frac{u^2}{2} + \frac{u^3}{3} + \ldots \). Setting \( u = \frac{x}{2} \), we have: \[ \ln(2+x) = \ln(2(1 + \frac{x}{2})) = \ln(2) + \ln(1 + \frac{x}{2}) = \ln(2) + \left(\frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{24} + \ldots\right). \] Thus, \[ x \ln(2+x) = x \ln(2) + \frac{x^2}{2} - \frac{x^3}{8} + O(x^4). \] The first three non-zero terms are given by \( x \ln(2) \), \( \frac{x^2}{2} \), and \( -\frac{x^3}{8} \). Now, for \( x \ln(2-x) \), we can express \( \ln(2-x) \) as: \[ \ln(2-x) = \ln(2(1 - \frac{x}{2})) = \ln(2) + \ln(1 - \frac{x}{2}). \] The expansion for \( \ln(1 - u) \) gives: \[ \ln(1 - \frac{x}{2}) = -\left(\frac{x}{2} + \frac{x^2}{8} + \frac{x^3}{24} + \ldots\right). \] Substituting this back, we find: \[ x \ln(2-x) = x \ln(2) - \frac{x^2}{2} - \frac{x^3}{8} + O(x^4). \] So the first three non-zero terms for \( x \ln(2-x) \) are \( x \ln(2) \), \( -\frac{x^2}{2} \), and \( -\frac{x^3}{8} \). Next, let's find the Maclaurin expansion of \( x \ln(4 - x^2) \). We express it as: \[ x \ln(4 - x^2) = x \ln(4(1 - \frac{x^2}{4})) = x (\ln(4) + \ln(1 - \frac{x^2}{4})). \] Expanding \( \ln(1 - u) \) gives us \( -\left(\frac{x^2}{4} + \frac{x^4}{32} + \ldots\right) \). Thus we have: \[ x \ln(4 - x^2) = x \ln(4) - \frac{x^3}{4} + O(x^5). \] The first two non-zero terms are \( x \ln(4) \) and \( -\frac{x^3}{4} \).

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy