Question
upstudy study bank question image url

3. Using Table \( G \), find the values for \( \chi_{\text {left }}^{2} \) and \( \chi_{\text {right }}^{2} \) a. \( \alpha=0.05, n=12 \) b. \( \alpha=0.10, n=20 \) c. \( \alpha=0.05, n=27 \) d. \( \alpha=0.01, n=6 \) e. \( \alpha=0.10, n=41 \)

Ask by Horton Nichols. in the United States
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the critical values for each scenario: - **a.** \( \alpha = 0.05 \), \( n = 12 \): - \( \chi_{\text{left}}^{2} \approx 3.816 \) - \( \chi_{\text{right}}^{2} \approx 19.675 \) - **b.** \( \alpha = 0.10 \), \( n = 20 \): - \( \chi_{\text{left}}^{2} \approx 10.117 \) - \( \chi_{\text{right}}^{2} \approx 28.845 \) - **c.** \( \alpha = 0.05 \), \( n = 27 \): - \( \chi_{\text{left}}^{2} \approx 14.611 \) - \( \chi_{\text{right}}^{2} \approx 37.652 \) - **d.** \( \alpha = 0.01 \), \( n = 6 \): - \( \chi_{\text{left}}^{2} \approx 1.145 \) - \( \chi_{\text{right}}^{2} \approx 15.086 \) - **e.** \( \alpha = 0.10 \), \( n = 41 \): - \( \chi_{\text{left}}^{2} \approx 24.433 \) - \( \chi_{\text{right}}^{2} \approx 55.758 \)

Solution

To determine the critical values \( \chi_{\text{left}}^{2} \) and \( \chi_{\text{right}}^{2} \) for each scenario, we'll use the chi-square distribution table (referred to as Table \( G \)). The degrees of freedom (df) are typically calculated as \( \text{df} = n - 1 \), where \( n \) is the sample size. Here's a step-by-step guide and the corresponding critical values for each part: ### General Steps: 1. **Determine Degrees of Freedom (df):** \[ \text{df} = n - 1 \] 2. **Find Critical Values:** - **Right Critical Value (\( \chi_{\text{right}}^{2} \))** corresponds to the upper tail (1 - \( \alpha \)) of the chi-square distribution. - **Left Critical Value (\( \chi_{\text{left}}^{2} \))** corresponds to the lower tail (\( \alpha \)) of the chi-square distribution. ### Detailed Solutions: #### a. \( \alpha = 0.05 \), \( n = 12 \) - **Degrees of Freedom:** \[ \text{df} = 12 - 1 = 11 \] - **Critical Values:** - \( \chi_{\text{left}}^{2} \) (0.05) ≈ **3.816** - \( \chi_{\text{right}}^{2} \) (0.95) ≈ **19.675** #### b. \( \alpha = 0.10 \), \( n = 20 \) - **Degrees of Freedom:** \[ \text{df} = 20 - 1 = 19 \] - **Critical Values:** - \( \chi_{\text{left}}^{2} \) (0.10) ≈ **10.117** - \( \chi_{\text{right}}^{2} \) (0.90) ≈ **28.845** #### c. \( \alpha = 0.05 \), \( n = 27 \) - **Degrees of Freedom:** \[ \text{df} = 27 - 1 = 26 \] - **Critical Values:** - \( \chi_{\text{left}}^{2} \) (0.05) ≈ **14.611** - \( \chi_{\text{right}}^{2} \) (0.95) ≈ **37.652** #### d. \( \alpha = 0.01 \), \( n = 6 \) - **Degrees of Freedom:** \[ \text{df} = 6 - 1 = 5 \] - **Critical Values:** - \( \chi_{\text{left}}^{2} \) (0.01) ≈ **1.145** - \( \chi_{\text{right}}^{2} \) (0.99) ≈ **15.086** #### e. \( \alpha = 0.10 \), \( n = 41 \) - **Degrees of Freedom:** \[ \text{df} = 41 - 1 = 40 \] - **Critical Values:** - \( \chi_{\text{left}}^{2} \) (0.10) ≈ **24.433** - \( \chi_{\text{right}}^{2} \) (0.90) ≈ **55.758** ### Summary of Critical Values: | Part | \( \alpha \) | \( n \) | Degrees of Freedom (df) | \( \chi_{\text{left}}^{2} \) | \( \chi_{\text{right}}^{2} \) | |------|--------------|---------|--------------------------|-------------------------------|--------------------------------| | a | 0.05 | 12 | 11 | 3.816 | 19.675 | | b | 0.10 | 20 | 19 | 10.117 | 28.845 | | c | 0.05 | 27 | 26 | 14.611 | 37.652 | | d | 0.01 | 6 | 5 | 1.145 | 15.086 | | e | 0.10 | 41 | 40 | 24.433 | 55.758 | **Note:** The critical values provided are approximate and based on standard chi-square distribution tables. For precise calculations, especially for large degrees of freedom or exact significance levels, it's recommended to use statistical software or more detailed tables.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the values for \( \chi_{\text {left }}^{2} \) and \( \chi_{\text {right }}^{2} \) using a chi-square distribution table, you typically need to determine the degrees of freedom, which is based on the sample size. The degrees of freedom for chi-square tests is calculated as \( df = n - 1 \). Now, let's delve into the scenarios you provided: - For \( \alpha = 0.05, n = 12 \): The degrees of freedom is \( 12 - 1 = 11 \). Using a chi-square table, \( \chi_{\text{left}}^{2} \) is typically the value for \( \alpha/2 \) and \( \chi_{\text{right}}^{2} \) for \( 1 - \alpha/2 \). - For \( \alpha = 0.10, n = 20 \): Here, \( df = 20 - 1 = 19 \). Look up the critical values corresponding to \( 0.05 \) and \( 0.95 \) in the table to find your chi-square values. For the remaining scenarios, you would apply the same method: - \( \alpha = 0.05, n = 27 \) leads to \( df = 26 \). - \( \alpha = 0.01, n = 6 \) leads to \( df = 5 \). - \( \alpha = 0.10, n = 41 \) leads to \( df = 40 \). Once you identify the degree of freedom, you can retrieve the critical values from the chi-square table based on your chosen alpha levels. Each configuration will yield a different pair of critical values for \( \chi_{\text{left}}^{2} \) and \( \chi_{\text{right}}^{2} \). Enthusiastic learners often fail to check for continuity corrections when approximating chi-squared distributions, especially with small sample sizes. Always double-check that you're using the right critical values tailored to your specific degrees of freedom!

Related Questions

Latest Statistics Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy