Answer
\( 12x^{3} - 4x = 4x(3x^{2} - 1) \)
\( 3a^{2} - 9ab + 12a^{2}b = 3a(a - 3b + 4ab) \)
\( -2mn + 28m^{2}n - 6n = 2n(7m + 3)(2m - 1) \)
Solution
Let's factor each of the given expressions by identifying and extracting their greatest common factors (GCF) and then factoring further where possible.
---
### (3) \( 12x^{3} - 4x \)
**Step 1:** Identify the GCF.
- The GCF of \(12x^3\) and \(4x\) is \(4x\).
**Step 2:** Factor out the GCF.
\[
12x^{3} - 4x = 4x(3x^{2} - 1)
\]
**Factored Form:**
\[
12x^{3} - 4x = 4x(3x^{2} - 1)
\]
---
### (7) \( 3a^{2} - 9ab + 12a^{2}b \)
**Step 1:** Identify the GCF.
- All terms have a common factor of \(3a\).
**Step 2:** Factor out the GCF.
\[
3a^{2} - 9ab + 12a^{2}b = 3a(a - 3b + 4a b)
\]
**Alternative Factoring:**
You can also rearrange and factor further if desired:
\[
3a(a - 3b + 4a b) = 3a(a(1 + 4b) - 3b)
\]
**Factored Form:**
\[
3a^{2} - 9ab + 12a^{2}b = 3a(a - 3b + 4ab)
\]
---
### \( -2mn + 28m^{2}n - 6n \)
**Step 1:** Identify the GCF.
- All terms have a common factor of \(2n\).
**Step 2:** Factor out the GCF.
\[
-2mn + 28m^{2}n - 6n = 2n(-m + 14m^{2} - 3)
\]
**Step 3:** Factor the quadratic expression inside the parentheses.
\[
14m^{2} - m - 3
\]
Find two numbers that multiply to \(-42\) (14 * -3) and add to \(-1\). These numbers are \(-7\) and \(6\).
\[
14m^{2} - m - 3 = 14m^{2} - 7m + 6m - 3 = 7m(2m - 1) + 3(2m - 1) = (7m + 3)(2m - 1)
\]
**Final Factored Form:**
\[
-2mn + 28m^{2}n - 6n = 2n(7m + 3)(2m - 1)
\]
---
**Summary of Factored Forms:**
1. \( 12x^{3} - 4x = 4x(3x^{2} - 1) \)
2. \( 3a^{2} - 9ab + 12a^{2}b = 3a(a - 3b + 4ab) \)
3. \( -2mn + 28m^{2}n - 6n = 2n(7m + 3)(2m - 1) \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution