Question
upstudy study bank question image url

33. \( \lim _{x \rightarrow 0} \frac{\sin ^{2} \frac{x}{3}}{x^{2}} \).

Ask by Mullins Martin. in Democratic Republic of the Congo
Jan 13,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La limite est égale à \( \frac{1}{9} \).

Solution

Pour évaluer la limite suivante : \[ \lim _{x \rightarrow 0} \frac{\sin^{2} \left(\frac{x}{3}\right)}{x^{2}}, \] nous pouvons utiliser la propriété fondamentale des limites trigonométriques, qui stipule que : \[ \lim_{u \rightarrow 0} \frac{\sin u}{u} = 1. \] Posons \( u = \frac{x}{3} \). Ainsi, lorsque \( x \) tend vers 0, \( u \) tend également vers 0. La limite devient alors : \[ \lim _{u \rightarrow 0} \frac{\sin^{2} u}{(3u)^{2}} = \lim _{u \rightarrow 0} \frac{\sin^{2} u}{9u^{2}} = \frac{1}{9} \left( \lim _{u \rightarrow 0} \left( \frac{\sin u}{u} \right)^{2} \right). \] Étant donné que \( \lim_{u \rightarrow 0} \frac{\sin u}{u} = 1 \), nous obtenons : \[ \frac{1}{9} \times 1^{2} = \frac{1}{9}. \] **Réponse :** La limite vaut \( \frac{1}{9} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To evaluate the limit \( \lim _{x \rightarrow 0} \frac{\sin ^{2} \frac{x}{3}}{x^{2}} \), we can start by applying the limit properties related to the sine function. First, we use the fact that as \( x \) approaches 0, the expression \( \frac{\sin u}{u} \) approaches 1 when \( u = \frac{x}{3} \). We can rewrite the limit as follows: \[ \lim_{x \rightarrow 0} \frac{\sin^2 \frac{x}{3}}{x^2} = \lim_{x \rightarrow 0} \left( \frac{\sin \frac{x}{3}}{\frac{x}{3}} \cdot \frac{x}{3} \cdot \frac{\sin \frac{x}{3}}{\frac{x}{3}} \cdot \frac{3}{x} \right) \] This simplifies into: \[ = \lim_{x \rightarrow 0} \left( \left( \frac{\sin \frac{x}{3}}{\frac{x}{3}} \right)^2 \cdot \frac{3^2}{x^2} \right) \] By substituting \( u = \frac{x}{3} \), as \( x \to 0 \), \( u \to 0 \). Thus, we change \( x \) in terms of \( u \): \[ x = 3u \quad \text{so} \quad \frac{3}{x} = \frac{1}{u} \] Then rewrite the limit: \[ = \lim_{u \rightarrow 0} \left( \left( \frac{\sin u}{u} \right)^2 \cdot 9 \right) = 9 \cdot \left( \lim_{u \rightarrow 0} \left( \frac{\sin u}{u} \right)^2 \right) \] Since \( \lim_{u \rightarrow 0} \frac{\sin u}{u} = 1 \), we then have: \[ = 9 \cdot 1^2 = 9 \] Thus, the limit is: \[ \boxed{9} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy