B. \( R=\{(x, y): x<2 y] \) \( \mathrm{D} \cdot \mathrm{R}=\{(x, y): x \) is the square of \( y\} \) INSTRUCTION III Match the statements in column ' \( B \) ' with the statemen A 21. Domain of \( f(x)=\frac{x^{3}-16}{x^{2}-7 x+12} \) B 22. Vertical aympaptote of \( f(x)=\frac{x^{2}-3}{x^{2}+5 x+6} \) A. \( x=-2 \) 22. Harimntal ay mptote of \( f(x)=\frac{3 x^{3}-9}{2 x^{3}+5 x+6} \) B. \( y=x-5 \) 24. Oblique asymptote of \( f(x)=\frac{x^{3}-9}{x^{2}+5 x+6} \) \( c x=0 \) and \( x=4 \) 25. \( x \)-intercepts of \( f(x)=\frac{x^{3}-2 x^{2}+2 a x}{x^{2}-25} \) D. \( \mathbb{R} \backslash(3,4] \) 26. \( y \)-intercept of \( f(x)=\frac{x^{3}-9 x^{2}+20 x}{x^{2}-25} \) E. \( y=\frac{3}{2} \) 27. . The graph of \( f(x)=\frac{x-1}{x^{2}+43} \) crosses F. \( y=-\frac{11}{4} \) its horizontal asymptote at G. \( \mathbf{R} \) H. \( y=0 \) or the point \( (0,0) \) 28. Range of the function \( f(x)=\frac{x^{3}-1}{x^{2}+1} \) L. \( x=\frac{2}{3} \) 29. The hole of the graph of \( f(x)=\frac{x^{2}-16}{x+4} \) is J. \( x=1 \) 30. The graph off \( (x)=\frac{x^{3}-1}{x^{2}+5 x+9} \quad \) crosses K. \( x=-4 \) or the point \( (-4,- \) Its oblique asymptote at DIRECTION V:- Work out the following problems clearly and correctly
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
The function \( f(x)=\frac{x^{3}-16}{x^{2}-7x+12} \) has a domain which excludes points where the denominator equals zero. Factoring the denominator gives \( (x-3)(x-4) \), thus leading to a domain of \( \mathbb{R} \setminus \{3, 4\} \). This is helpful to ensure the function remains defined where it's being analyzed! When examining vertical asymptotes for the function \( f(x)=\frac{x^{2}-3}{x^{2}+5x+6} \), we first find the values that cause the denominator \( (x+2)(x+3) \) to be zero. Thus, the vertical asymptotes occur at \( x=-2 \) and \( x=-3 \). Keep in mind that understanding asymptotic behavior can provide insight into the overarching behavior of the function!