25. \( \frac{1-\frac{2-\frac{1}{x}}{x}}{1-\frac{1}{x}} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To simplify the expression \( \frac{1-\frac{2-\frac{1}{x}}{x}}{1-\frac{1}{x}} \), let's break it down step by step. Starting with the numerator: 1. Simplify \( \frac{2 - \frac{1}{x}}{x} \): \[ 2 - \frac{1}{x} = \frac{2x - 1}{x} \] Therefore, \[ \frac{2 - \frac{1}{x}}{x} = \frac{2x - 1}{x^2} \] 2. Substitute this into the numerator: \[ 1 - \frac{2 - \frac{1}{x}}{x} = 1 - \frac{2x - 1}{x^2} = \frac{x^2 - (2x - 1)}{x^2} = \frac{x^2 - 2x + 1}{x^2} = \frac{(x - 1)^2}{x^2} \] Next, simplify the denominator \( 1 - \frac{1}{x} \): \[ 1 - \frac{1}{x} = \frac{x - 1}{x} \] Now we can rewrite the entire expression: \[ \frac{\frac{(x - 1)^2}{x^2}}{\frac{x - 1}{x}} = \frac{(x - 1)^2}{x^2} \cdot \frac{x}{x - 1} \] By canceling \( x - 1 \) (assuming \( x \neq 1 \)): \[ \frac{(x - 1) \cdot x}{x^2} = \frac{x - 1}{x} \] Thus, the final simplified expression is: \[ \frac{x - 1}{x} \]