Question
upstudy study bank question image url

25. \( \frac{1-\frac{2-\frac{1}{x}}{x}}{1-\frac{1}{x}} \)

Ask by Robbins Parry. in the United States
Jan 12,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified form of the expression is \( \frac{x-1}{x} \).

Solution

Calculate or simplify the expression \( (1-\frac{2-\frac{1}{x}}{x})/(1-\frac{1}{x}) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(1-\frac{2-\frac{1}{x}}{x}\right)}{\left(1-\frac{1}{x}\right)}\) - step1: Remove the parentheses: \(\frac{1-\frac{2-\frac{1}{x}}{x}}{1-\frac{1}{x}}\) - step2: Subtract the terms: \(\frac{1-\frac{\frac{2x-1}{x}}{x}}{1-\frac{1}{x}}\) - step3: Divide the terms: \(\frac{1-\frac{2x-1}{x^{2}}}{1-\frac{1}{x}}\) - step4: Subtract the terms: \(\frac{\frac{x^{2}-2x+1}{x^{2}}}{1-\frac{1}{x}}\) - step5: Subtract the terms: \(\frac{\frac{x^{2}-2x+1}{x^{2}}}{\frac{x-1}{x}}\) - step6: Multiply by the reciprocal: \(\frac{x^{2}-2x+1}{x^{2}}\times \frac{x}{x-1}\) - step7: Rewrite the expression: \(\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x}{x-1}\) - step8: Reduce the fraction: \(\frac{x-1}{x}\) The simplified form of the given expression \( \frac{1-\frac{2-\frac{1}{x}}{x}}{1-\frac{1}{x}} \) is \( \frac{x-1}{x} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression \( \frac{1-\frac{2-\frac{1}{x}}{x}}{1-\frac{1}{x}} \), let's break it down step by step. Starting with the numerator: 1. Simplify \( \frac{2 - \frac{1}{x}}{x} \): \[ 2 - \frac{1}{x} = \frac{2x - 1}{x} \] Therefore, \[ \frac{2 - \frac{1}{x}}{x} = \frac{2x - 1}{x^2} \] 2. Substitute this into the numerator: \[ 1 - \frac{2 - \frac{1}{x}}{x} = 1 - \frac{2x - 1}{x^2} = \frac{x^2 - (2x - 1)}{x^2} = \frac{x^2 - 2x + 1}{x^2} = \frac{(x - 1)^2}{x^2} \] Next, simplify the denominator \( 1 - \frac{1}{x} \): \[ 1 - \frac{1}{x} = \frac{x - 1}{x} \] Now we can rewrite the entire expression: \[ \frac{\frac{(x - 1)^2}{x^2}}{\frac{x - 1}{x}} = \frac{(x - 1)^2}{x^2} \cdot \frac{x}{x - 1} \] By canceling \( x - 1 \) (assuming \( x \neq 1 \)): \[ \frac{(x - 1) \cdot x}{x^2} = \frac{x - 1}{x} \] Thus, the final simplified expression is: \[ \frac{x - 1}{x} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy