a \( \sqrt{75}+\sqrt{27}-\sqrt{12} \) b \( \frac{11^{n+1} 10^{n-1}}{2^{n-1} 55^{n+1}} \) Solve for \( x \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
Let’s break it down step by step! For part \( a \), we simplify the expression \( \sqrt{75} + \sqrt{27} - \sqrt{12} \): - \( \sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3} \) - \( \sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3} \) - \( \sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} \) Now, combine them: \[ 5\sqrt{3} + 3\sqrt{3} - 2\sqrt{3} = (5 + 3 - 2)\sqrt{3} = 6\sqrt{3} \] For part \( b \), let’s simplify the expression \( \frac{11^{n+1} 10^{n-1}}{2^{n-1} 55^{n+1}} \): - Recognize that \( 55^{n+1} = (5 \times 11)^{n+1} = 5^{n+1} \times 11^{n+1} \) - Thus, we rewrite it as: \[ \frac{11^{n+1} 10^{n-1}}{2^{n-1} \times 5^{n+1} \times 11^{n+1}} = \frac{10^{n-1}}{2^{n-1} \times 5^{n+1}} \] - Now express \( 10^{n-1} = 2^{n-1} \times 5^{n-1} \): \[ \frac{2^{n-1} \times 5^{n-1}}{2^{n-1} \times 5^{n+1}} = \frac{1}{5^2} = \frac{1}{25} \] So, the answers are: - \( a = 6\sqrt{3} \) - \( b = \frac{1}{25} \) Enjoy your math journey!