Question
upstudy study bank question image url

You want to be able to withdraw each year for 15 years. Your account earns
interest. How much do you need in your account at the beginning?

Ask by Gray Hardy. in the United States
Mar 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

You need approximately $222,450 in your account at the beginning.

Solution

Given that you wish to withdraw each year for 15 years and your account earns interest per year, we need to determine the present value (PV) of this annuity. The formula for the present value of an annuity is
where
is the annual payment,
is the annual interest rate (in decimal form), and
is the number of years.
Step 1. Identify the variables:
Step 2. Plug the values into the formula:
Step 3. Simplify the expression:
First, calculate :
Next, raise to the power of :
Step 4. Calculate :
Using a calculator or logarithms, we find
Thus,
Step 5. Compute the numerator of the annuity factor:
Step 6. Divide by the interest rate :
Step 7. Multiply by the annual payment :
Thus, you need approximately in the account at the beginning.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To find out how much you need in your account at the beginning, you can use the present value of an annuity formula. The formula is:
where is the present value, is the payment amount ($20,000), is the interest rate (0.04), and is the number of years (15).
Plugging in the values:
Calculating this gives:
So, you would need approximately $231,480 in your account at the beginning to withdraw $20,000 each year for 15 years at a 4% interest rate.
To confirm computations, applying financial calculators or programming languages like Python can help mimic manual calculations. Just remember to take care around rounding errors, which can sneak into long calculations!

Related Questions

Question 1 / Vraag 1 (14) Income Tax: Rates of Tax for Individuals / Inkomstebelasting: Belastingkoerse vir individue Search on the internet (SARS website) for the rates of tax for individuals, for the 2026 tax year (1 March 2025-28 February 2026). This information can be used to write income tax (T) as a function of taxable income (x). Use this information to create a piecewise defined function T, using one independent variable x, to model the rates of tax for individuals. / Gaan soek op die internet (SARS/SAID webtuiste) vir die belastingkoerse vir individue, vir die 2026 belastingjaar (1 Maart 2025 28 Februarie 2026). Hierdie inligting kan gebruik word om inkomstebelasting ( T ) as ' n funksie van die belasbare inkomste ( x ) te skryf. Gebruik hierdie inligting om 'n stuksgewys gedefinieerde funksie T te ontwikkel, deur een onafhanklike veranderlike x te gebruik, om die belastingkoerse vir individue te modelleer. Question 2 / Vraag 2 (10) The supply function for a commodity takes the form qs(p)=ap2+bp+c, for some constants a,b,c. When p=1, the quantity supplied is 5 ; when p=2, the quantity supplied is 12 ; when p=3, the quantity supplied is 23 . Use matrix reduction (Gaussian elimination) to determine the constants a,b,c. Give the supply funcrtion. / Die aanbodfunksie vir ' n produk het die vorm qs(p)=ap2+bp+c, vir die konstantes a,b,c. As p=1, is die hoeveelheid wat verskaf is 5 ; wanneer p=2, is die hoeveelheid wat verskaf is 12 ; wanneer p=3, is die hoeveelheid wat verskaf is 23. Gebruik matriksreduksie (Gauss-eliminasie) en bepaal die konstantes a,b,c. Skryf die aanbodfunksie neer.

Latest Economics Questions

Question 1 / Vraag 1 (14) Income Tax: Rates of Tax for Individuals / Inkomstebelasting: Belastingkoerse vir individue Search on the internet (SARS website) for the rates of tax for individuals, for the 2026 tax year (1 March 2025-28 February 2026). This information can be used to write income tax (T) as a function of taxable income (x). Use this information to create a piecewise defined function T, using one independent variable x, to model the rates of tax for individuals. / Gaan soek op die internet (SARS/SAID webtuiste) vir die belastingkoerse vir individue, vir die 2026 belastingjaar (1 Maart 2025 28 Februarie 2026). Hierdie inligting kan gebruik word om inkomstebelasting ( T ) as ' n funksie van die belasbare inkomste ( x ) te skryf. Gebruik hierdie inligting om 'n stuksgewys gedefinieerde funksie T te ontwikkel, deur een onafhanklike veranderlike x te gebruik, om die belastingkoerse vir individue te modelleer. Question 2 / Vraag 2 (10) The supply function for a commodity takes the form qs(p)=ap2+bp+c, for some constants a,b,c. When p=1, the quantity supplied is 5 ; when p=2, the quantity supplied is 12 ; when p=3, the quantity supplied is 23 . Use matrix reduction (Gaussian elimination) to determine the constants a,b,c. Give the supply funcrtion. / Die aanbodfunksie vir ' n produk het die vorm qs(p)=ap2+bp+c, vir die konstantes a,b,c. As p=1, is die hoeveelheid wat verskaf is 5 ; wanneer p=2, is die hoeveelheid wat verskaf is 12 ; wanneer p=3, is die hoeveelheid wat verskaf is 23. Gebruik matriksreduksie (Gauss-eliminasie) en bepaal die konstantes a,b,c. Skryf die aanbodfunksie neer.
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy