Resuelvo los siquientes curciones \( 3 x-1-(x-4)-[2(x-3)(1-2)]=x+2 \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
Para resolver la ecuación \( 3x - 1 - (x - 4) - [2(x - 3)(1 - 2)] = x + 2 \), empecemos simplificando los términos. Primero, notamos que \( 1 - 2 = -1 \), entonces: \[ 2(x - 3)(1 - 2) = 2(x - 3)(-1) = -2(x - 3) = -2x + 6 \] Sustituyendo esto en la ecuación: \[ 3x - 1 - (x - 4) - (-2x + 6) = x + 2 \] Ahora simplificamos: \[ 3x - 1 - x + 4 + 2x - 6 = x + 2 \] Esto se puede simplificar a: \[ (3x - x + 2x) + (-1 + 4 - 6) = x + 2 \] Llevar a cabo la simplificación nos da: \[ 4x - 3 = x + 2 \] Ahora, restamos \(x\) de ambos lados: \[ 4x - x - 3 = 2 \] Lo que resulta en: \[ 3x - 3 = 2 \] Ahora sumamos 3 en ambos lados: \[ 3x = 5 \] Dividiendo ambos lados entre 3: \[ x = \frac{5}{3} \] ¡Y ahí lo tenemos! La solución es \( x = \frac{5}{3} \).