Answer
**Summary of Asymptotes for Problems 45-48:**
1. **Problem 45:**
- **Vertical Asymptote:** \( x = -4 \)
- **Horizontal Asymptote:** \( y = 3 \)
- **Oblique Asymptote:** None
2. **Problem 46:**
- **Vertical Asymptote:** \( x = 6 \)
- **Horizontal Asymptote:** \( y = 3 \)
- **Oblique Asymptote:** None
3. **Problem 47:**
- **Vertical Asymptote:** \( x = 3 \)
- **Oblique Asymptote:** \( y = x + 5 \)
- **Horizontal Asymptote:** None
4. **Problem 48:**
- **Vertical Asymptotes:** \( x = 7 \) and \( x = -2 \)
- **Oblique Asymptote:** \( y = x + 5 \)
- **Horizontal Asymptote:** None
Solution
Let's analyze each rational function to determine their vertical, horizontal, and oblique asymptotes.
---
### **Problem 45**
**Function:** \( R(x) = \frac{3x}{x + 4} \)
- **Vertical Asymptote:**
- Set the denominator equal to zero: \( x + 4 = 0 \) ⇒ \( x = -4 \).
- **Horizontal Asymptote:**
- Compare the degrees of the numerator and the denominator. Both are degree 1.
- The horizontal asymptote is the ratio of the leading coefficients: \( y = \frac{3}{1} = 3 \).
- **Oblique Asymptote:**
- None, since the degrees of the numerator and denominator are equal.
**Summary:**
- **Vertical Asymptote:** \( x = -4 \)
- **Horizontal Asymptote:** \( y = 3 \)
- **Oblique Asymptote:** None
---
### **Problem 46**
**Function:** \( R(x) = \frac{3x + 5}{x - 6} \)
- **Vertical Asymptote:**
- Set the denominator equal to zero: \( x - 6 = 0 \) ⇒ \( x = 6 \).
- **Horizontal Asymptote:**
- Both numerator and denominator are degree 1.
- The horizontal asymptote is the ratio of the leading coefficients: \( y = \frac{3}{1} = 3 \).
- **Oblique Asymptote:**
- None, since the degrees of the numerator and denominator are equal.
**Summary:**
- **Vertical Asymptote:** \( x = 6 \)
- **Horizontal Asymptote:** \( y = 3 \)
- **Oblique Asymptote:** None
---
### **Problem 47**
**Function:** \( H(x) = \frac{x^3 - 8}{x^2 - 5x + 6} \)
- **Vertical Asymptotes:**
- Factor the denominator: \( x^2 - 5x + 6 = (x - 2)(x - 3) \).
- Factor the numerator: \( x^3 - 8 = (x - 2)(x^2 + 2x + 4) \).
- After cancellation, \( H(x) = \frac{x^2 + 2x + 4}{x - 3} \) with \( x \neq 2 \).
- **Vertical Asymptote:** \( x = 3 \).
- **Horizontal/Oblique Asymptote:**
- The simplified numerator \( x^2 + 2x + 4 \) is degree 2, and the denominator \( x - 3 \) is degree 1.
- Since the numerator's degree is one higher, there is an **oblique asymptote**.
- Perform polynomial division:
\[
\frac{x^2 + 2x + 4}{x - 3} = x + 5 + \frac{19}{x - 3}
\]
- **Oblique Asymptote:** \( y = x + 5 \).
- **Horizontal Asymptote:**
- None, since an oblique asymptote exists.
**Summary:**
- **Vertical Asymptote:** \( x = 3 \)
- **Oblique Asymptote:** \( y = x + 5 \)
- **Horizontal Asymptote:** None
---
### **Problem 48**
**Function:** \( G(x) = \frac{x^3 + 1}{x^2 - 5x - 14} \)
- **Vertical Asymptotes:**
- Factor the denominator: \( x^2 - 5x - 14 = (x - 7)(x + 2) \).
- The numerator \( x^3 + 1 = (x + 1)(x^2 - x + 1) \) shares no common factors with the denominator.
- **Vertical Asymptotes:** \( x = 7 \) and \( x = -2 \).
- **Horizontal/Oblique Asymptote:**
- The numerator \( x^3 + 1 \) is degree 3, and the denominator \( x^2 - 5x - 14 \) is degree 2.
- Since the numerator's degree is one higher, there is an **oblique asymptote**.
- Perform polynomial division:
\[
\frac{x^3 + 1}{x^2 - 5x - 14} = x + 5 + \frac{39x + 71}{x^2 - 5x - 14}
\]
- **Oblique Asymptote:** \( y = x + 5 \).
- **Horizontal Asymptote:**
- None, since an oblique asymptote exists.
**Summary:**
- **Vertical Asymptotes:** \( x = 7 \) and \( x = -2 \)
- **Oblique Asymptote:** \( y = x + 5 \)
- **Horizontal Asymptote:** None
---
### **Final Summary:**
1. **Problem 45:**
- **Vertical Asymptote:** \( x = -4 \)
- **Horizontal Asymptote:** \( y = 3 \)
- **Oblique Asymptote:** None
2. **Problem 46:**
- **Vertical Asymptote:** \( x = 6 \)
- **Horizontal Asymptote:** \( y = 3 \)
- **Oblique Asymptote:** None
3. **Problem 47:**
- **Vertical Asymptote:** \( x = 3 \)
- **Oblique Asymptote:** \( y = x + 5 \)
- **Horizontal Asymptote:** None
4. **Problem 48:**
- **Vertical Asymptotes:** \( x = 7 \) and \( x = -2 \)
- **Oblique Asymptote:** \( y = x + 5 \)
- **Horizontal Asymptote:** None
---
Feel free to ask if you need further explanations or assistance with other problems!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution