Question
upstudy study bank question image url

\( x _ { 1 / 2 } = - \frac { \pm \sqrt { e ^ { 2 } - 4 a c } } { 2 d } \)

Ask by Sandoval Davies. in Mexico
Jan 14,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La ecuación \( x_{1/2} = -\frac{\pm \sqrt{e^2 - 4ac}}{2d} \) es la fórmula cuadrática para resolver ecuaciones de segundo grado. Utiliza el discriminante \( e^2 - 4ac \) para determinar las soluciones de la ecuación \( ax^2 + bx + c = 0 \).

Solution

La ecuación que has proporcionado es una forma de la fórmula cuadrática, que se utiliza para resolver ecuaciones de segundo grado de la forma \( ax^2 + bx + c = 0 \). En este caso, parece que se está resolviendo para \( x \) en términos de \( a \), \( b \), \( c \), y \( d \). La fórmula general para resolver una ecuación cuadrática es: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] En tu caso, parece que has sustituido \( b \) por \( e \) y \( a \) por \( d \). Vamos a analizar la ecuación paso a paso: 1. **Identificación de los términos**: - \( e^2 \) representa \( b^2 \). - \( 4ac \) es el término que se resta del discriminante. - \( 2d \) es el denominador, que representa \( 2a \). 2. **Discriminante**: - El discriminante \( D = e^2 - 4ac \) determina la naturaleza de las raíces de la ecuación cuadrática. - Si \( D > 0 \), hay dos soluciones reales y distintas. - Si \( D = 0 \), hay una solución real doble. - Si \( D < 0 \), no hay soluciones reales (las soluciones son complejas). 3. **Solución**: - La solución para \( x \) se expresa como: \[ x = \frac{-e \pm \sqrt{e^2 - 4ac}}{2d} \] Si necesitas resolver esta ecuación para valores específicos de \( a \), \( c \), \( d \), y \( e \), por favor proporciona esos valores y puedo ayudarte a calcular las soluciones.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

This equation resembles the quadratic formula, albeit with some variable substitutions. In a typical quadratic equation of the form \( ax^2 + bx + c = 0 \), the solutions for \( x \) are derived from the discriminant \( b^2 - 4ac \). In your case, you've got a slightly different notation, where it looks like \( e \) takes the place of \( b \) and \( d \) replaces \( 2 \). It’s important to note the structure; you can identify the roots depending on the nature of the discriminant. To apply this equation successfully, first ensure your values for \( a \), \( b \) (or in this case, \( e \)), and \( c \) are plugged in correctly to prevent common mistakes such as miscalculating the discriminant. A positive discriminant indicates two real roots, zero means one real root, and a negative one denotes complex roots. Always check these conditions before jumping to conclusions about your solution!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy