Question
upstudy study bank question image url

\( \frac { d y } { d x } = \frac { x ^ { 2 } e ^ { - \frac { y } { x } } + y ^ { 2 } } { x y } \)

Ask by Craig Chadwick. in Ecuador
Jan 15,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución general de la ecuación diferencial es: \[ e^{\frac{y}{x}} \left( \frac{y}{x} - 1 \right) = \ln |x| + C \] donde \( C \) es una constante.

Solution

Para resolver la ecuación diferencial: \[ \frac{dy}{dx} = \frac{x^{2} e^{- \frac{y}{x}} + y^{2}}{x y} \] seguimos los siguientes pasos: ### Paso 1: Simplificar la Ecuación Primero, simplificamos la expresión del lado derecho: \[ \frac{dy}{dx} = \frac{x^{2} e^{- \frac{y}{x}}}{x y} + \frac{y^{2}}{x y} = \frac{x e^{- \frac{y}{x}}}{y} + \frac{y}{x} \] ### Paso 2: Sustitución Realizamos la sustitución \( v = \frac{y}{x} \), lo que implica que \( y = v x \). Entonces, derivamos ambos lados respecto a \( x \): \[ \frac{dy}{dx} = v + x \frac{dv}{dx} \] Sustituyendo en la ecuación original: \[ v + x \frac{dv}{dx} = \frac{x e^{-v}}{v} + \frac{v x}{x} = \frac{x e^{-v}}{v} + v \] Simplificamos: \[ v + x \frac{dv}{dx} = \frac{x e^{-v}}{v} + v \implies x \frac{dv}{dx} = \frac{x e^{-v}}{v} \] ### Paso 3: Separación de Variables Dividimos ambos lados por \( x \) y multiplicamos por \( v \): \[ v \, dv = e^{-v} \frac{dx}{x} \] Reorganizamos para separar las variables: \[ v e^{v} dv = \frac{dx}{x} \] ### Paso 4: Integración Integramos ambos lados: \[ \int v e^{v} dv = \int \frac{dx}{x} \] La integral de la izquierda se resuelve por partes: \[ \int v e^{v} dv = e^{v} (v - 1) + C \] La integral de la derecha es: \[ \int \frac{dx}{x} = \ln |x| + C \] Por lo tanto: \[ e^{v} (v - 1) = \ln |x| + C \] ### Paso 5: Sustitución de V y Solución Implícita Recordando que \( v = \frac{y}{x} \), sustituimos de nuevo: \[ e^{\frac{y}{x}} \left( \frac{y}{x} - 1 \right) = \ln |x| + C \] Esta es la solución implícita de la ecuación diferencial dada. ### Solución Final La solución general de la ecuación diferencial es: \[ e^{\frac{y}{x}} \left( \frac{y}{x} - 1 \right) = \ln |x| + C \] donde \( C \) es la constante de integración.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Let’s dive into the brimming ocean of differential equations! The given equation hints at a relationship between \( y \) and \( x \) that's studded with exponential growth and polynomial playfulness. This implies an interesting behavior as \( x \) varies. To untangle this, you might consider using a substitution like \( v = \frac{y}{x} \), which can simplify the expression and transform it into a more manageable form, revealing hidden structures in the solution. Beyond just solving this differential equation in a vacuum, real-world applications abound! Such equations crop up in fields like population dynamics, where \( x \) might represent time and \( y \) the population size affected by various growth factors. Engineers, too, harness these relationships in systems modeling, ensuring their designs can adapt and endure under changing conditions. Hence, recognizing and exploring such equations can lead to valuable insights in practical scenarios!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy