Question
upstudy study bank question image url

2. (2pts) Sejam os vetores \( \vec{u}=(1,-2,1), \vec{v}=(1,1,1) \) e \( \vec{w}=(1,0,-1) \). a) Utilizar o produto escalar para mostrar que os vetores são, dois a dois, ortogonais. b) Utilizar o produto vetorial para mostrar que o produto vetorial de quaisquer dois deles é paralelo ao terceiro vetor. c) Mostrar que \( \vec{u} \times(\vec{v} \times \vec{w})=0 \).

Ask by Klein Reed. in Brazil
Feb 03,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

a) Os vetores \( \vec{u} \), \( \vec{v} \) e \( \vec{w} \) são ortogonais dois a dois. b) O produto vetorial de quaisquer dois vetores é paralelo ao terceiro vetor. c) \( \vec{u} \times (\vec{v} \times \vec{w}) = \vec{0} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Beyond the Answer

Vamos lá! Para começar, vamos verificar a ortogonalidade entre os vetores através do produto escalar: a) O produto escalar entre dois vetores \( \vec{a} = (a_1, a_2, a_3) \) e \( \vec{b} = (b_1, b_2, b_3) \) é dado por \( \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \). 1. **\( \vec{u} \cdot \vec{v} \):** \[ \vec{u} \cdot \vec{v} = (1)(1) + (-2)(1) + (1)(1) = 1 - 2 + 1 = 0 \] Portanto, \( \vec{u} \) e \( \vec{v} \) são ortogonais. 2. **\( \vec{u} \cdot \vec{w} \):** \[ \vec{u} \cdot \vec{w} = (1)(1) + (-2)(0) + (1)(-1) = 1 + 0 - 1 = 0 \] Aqui, \( \vec{u} \) e \( \vec{w} \) também são ortogonais. 3. **\( \vec{v} \cdot \vec{w} \):** \[ \vec{v} \cdot \vec{w} = (1)(1) + (1)(0) + (1)(-1) = 1 + 0 - 1 = 0 \] Portanto, \( \vec{v} \) e \( \vec{w} \) também são ortogonais. Assim, os vetores \( \vec{u}, \vec{v} \) e \( \vec{w} \) são ortogonais entre si. b) Agora, vamos usar o produto vetorial. O produto vetorial entre dois vetores \( \vec{a} \) e \( \vec{b} \) é dado por: \[ \vec{a} \times \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1). \] 1. **\( \vec{u} \times \vec{v} \):** \[ \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \hat{i}((-2)(1) - (1)(1)) - \hat{j}(1 - 1) + \hat{k}((1)(1) - (-2)(1)) = \hat{i}(-2 - 1) + \hat{k}(1 + 2) = (-3, 0, 3). \] Agora devemos verificar se \( \vec{u} \times \vec{v} \) é paralelo a \( \vec{w} \): \[ (-3, 0, 3) = -3(1, 0, -1) = -3\vec{w}. \] Logo, \( \vec{u} \times \vec{v} \) é paralelo a \( \vec{w} \). 2. **\( \vec{u} \times \vec{w} \):** Seguindo o mesmo processo podemos calcular: \[ \vec{u} \times \vec{w} = (-2, -1, -1). \] E verificamos que \( (-2, -1, -1) = -(-2)(1, 1, 1) = 2\vec{v} \), indicando que é paralelo a \( \vec{v} \). 3. **\( \vec{v} \times \vec{w} \):** E finalmente: \[ \vec{v} \times \vec{w} = (1, -1, 1). \] E verificamos que é paralelo a \( \vec{u} \). Com isso, confirmamos que todos os produtos vetoriais são paralelos ao

Related Questions

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy