Question
upstudy study bank question image url

Use the appropriate formula to find the future value (in ) of
deposited at the beginning of every six months, for 17 years if a bank
pays interest, compounded semiannually. (Round your answers to the
nearest cent.)

Ask by Dickson Hill. in the United States
Mar 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The future value of the account is approximately $14,695.34.

Solution

We are given that a deposit of is made at the beginning of every six‐month period over 17 years. The bank pays an annual interest rate of compounded semiannually. This means:
  • The interest rate per six‐month period is
  • The number of six‐month periods in 17 years is
Since the deposits are made at the beginning of each period, we are dealing with an annuity due. The future value of an annuity due is given by
where
  • (deposit per period),
  • ,
  • .
Substitute the values into the formula:
Step 1. Compute :
Using the exponential relation,
A calculation shows that
Step 2. Evaluate the fraction:
Step 3. Multiply by and the annuity due adjustment:
First, multiply :
Then, multiply by :
Thus, the future value of the account is approximately

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To calculate the future value of an annuity where payments are made at the beginning of each period, you can use the formula:
Where:
  • = payment amount per period ($300)
  • = interest rate per period (4% per year compounded semiannually, so )
  • = total number of payments (17 years × 2 = 34)
Now plug in the values:
Calculating :
Now, substitute and calculate:
Thus, the future value is approximately $15,774.66.

Related Questions

Question 1 / Vraag 1 (14) Income Tax: Rates of Tax for Individuals / Inkomstebelasting: Belastingkoerse vir individue Search on the internet (SARS website) for the rates of tax for individuals, for the 2026 tax year (1 March 2025-28 February 2026). This information can be used to write income tax (T) as a function of taxable income (x). Use this information to create a piecewise defined function T, using one independent variable x, to model the rates of tax for individuals. / Gaan soek op die internet (SARS/SAID webtuiste) vir die belastingkoerse vir individue, vir die 2026 belastingjaar (1 Maart 2025 28 Februarie 2026). Hierdie inligting kan gebruik word om inkomstebelasting ( T ) as ' n funksie van die belasbare inkomste ( x ) te skryf. Gebruik hierdie inligting om 'n stuksgewys gedefinieerde funksie T te ontwikkel, deur een onafhanklike veranderlike x te gebruik, om die belastingkoerse vir individue te modelleer. Question 2 / Vraag 2 (10) The supply function for a commodity takes the form qs(p)=ap2+bp+c, for some constants a,b,c. When p=1, the quantity supplied is 5 ; when p=2, the quantity supplied is 12 ; when p=3, the quantity supplied is 23 . Use matrix reduction (Gaussian elimination) to determine the constants a,b,c. Give the supply funcrtion. / Die aanbodfunksie vir ' n produk het die vorm qs(p)=ap2+bp+c, vir die konstantes a,b,c. As p=1, is die hoeveelheid wat verskaf is 5 ; wanneer p=2, is die hoeveelheid wat verskaf is 12 ; wanneer p=3, is die hoeveelheid wat verskaf is 23. Gebruik matriksreduksie (Gauss-eliminasie) en bepaal die konstantes a,b,c. Skryf die aanbodfunksie neer.

Latest Economics Questions

Question 1 / Vraag 1 (14) Income Tax: Rates of Tax for Individuals / Inkomstebelasting: Belastingkoerse vir individue Search on the internet (SARS website) for the rates of tax for individuals, for the 2026 tax year (1 March 2025-28 February 2026). This information can be used to write income tax (T) as a function of taxable income (x). Use this information to create a piecewise defined function T, using one independent variable x, to model the rates of tax for individuals. / Gaan soek op die internet (SARS/SAID webtuiste) vir die belastingkoerse vir individue, vir die 2026 belastingjaar (1 Maart 2025 28 Februarie 2026). Hierdie inligting kan gebruik word om inkomstebelasting ( T ) as ' n funksie van die belasbare inkomste ( x ) te skryf. Gebruik hierdie inligting om 'n stuksgewys gedefinieerde funksie T te ontwikkel, deur een onafhanklike veranderlike x te gebruik, om die belastingkoerse vir individue te modelleer. Question 2 / Vraag 2 (10) The supply function for a commodity takes the form qs(p)=ap2+bp+c, for some constants a,b,c. When p=1, the quantity supplied is 5 ; when p=2, the quantity supplied is 12 ; when p=3, the quantity supplied is 23 . Use matrix reduction (Gaussian elimination) to determine the constants a,b,c. Give the supply funcrtion. / Die aanbodfunksie vir ' n produk het die vorm qs(p)=ap2+bp+c, vir die konstantes a,b,c. As p=1, is die hoeveelheid wat verskaf is 5 ; wanneer p=2, is die hoeveelheid wat verskaf is 12 ; wanneer p=3, is die hoeveelheid wat verskaf is 23. Gebruik matriksreduksie (Gauss-eliminasie) en bepaal die konstantes a,b,c. Skryf die aanbodfunksie neer.
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy