Question
upstudy study bank question image url

Consider the following equation. \[ \frac{12}{1+e^{-x}}=2 \] (a) Find the exact solution of the exponential equation in terms of logarithms. \( x= \) (b) Use a calculator to find an approximation to the solution, rounded to six decimal places. \( x=\square \)

Ask by Hobbs Bowers. in the United States
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( x = -\ln(5) \) Approximately, \( x \approx -1.609438 \)

Solution

We start with the equation   12/(1 + e^(–x)) = 2. Step 1. Multiply both sides by (1 + e^(–x)) to eliminate the fraction:   12 = 2(1 + e^(–x)). Step 2. Divide both sides by 2:   6 = 1 + e^(–x). Step 3. Subtract 1 from both sides to isolate the exponential term:   e^(–x) = 5. Step 4. Take the natural logarithm of both sides:   ln(e^(–x)) = ln(5). Since ln(e^(–x)) simplifies to –x, this gives:   –x = ln(5). Step 5. Multiply both sides by –1:   x = –ln(5). Thus, the exact solution is: x = –ln(5). For the approximate value, compute ln(5) ≈ 1.609437912. Therefore:   x ≈ –1.609438 (rounded to six decimal places).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve the equation \(\frac{12}{1+e^{-x}}=2\), let's start by isolating the exponential term. First, multiply both sides by \(1 + e^{-x}\): \[ 12 = 2(1 + e^{-x}) \] Expanding the right side gives: \[ 12 = 2 + 2e^{-x} \] Now, subtract \(2\) from both sides: \[ 10 = 2e^{-x} \] Next, divide both sides by \(2\): \[ 5 = e^{-x} \] Taking the natural logarithm of both sides leads to: \[ -x = \ln(5) \] Therefore, we can express \(x\) as: \[ x = -\ln(5) \] Now, for the approximation, using a calculator, we can evaluate \( -\ln(5) \): \( x \approx -1.609438 \) (to six decimal places). So the answers are: (a) \( x = -\ln(5) \) (b) \( x = -1.609439 \)

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy