. 2 Galculate the values of the expressions below without using a calculator. (Show your calculation.) NBIII Answers only, no mark(s) will be awarded. \( 3.2 .1(-1)+(-7)+(-5) \) \( \qquad \) \( \qquad \) \( \qquad \) \( 3.2 .2-3+4 \times 5-6 \) \( \qquad \) \( \qquad \) (2) 3.2.3 \( -(-4)^{2}-\sqrt{62}-(-2)^{3} \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( (3 \) \( 3.2 .4 \quad \sqrt{ }-4 x-9+8^{2} \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( \qquad \) \( 3.2 .5 \frac{10-6 \div 2}{-7-(2 \times-7)} \) \( \qquad \) \( \qquad \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To solve the expressions you've provided, let's break them down step-by-step, showing the calculations clearly! 1. **Expression**: \( 3.2.1(-1)+(-7)+(-5) \) - Calculation: \[ 3.2 \cdot (-1) = -3.2 \] \[ -3.2 + (-7) = -3.2 - 7 = -10.2 \] \[ -10.2 + (-5) = -10.2 - 5 = -15.2 \] - **Final Value**: \(-15.2\) 2. **Expression**: \( 3.2.2 -3+4 \times 5-6 \) - Calculation: \[ 4 \times 5 = 20 \] \[ -3 + 20 - 6 = -3 + 14 = 11 \] - **Final Value**: \(11\) 3. **Expression**: \( 3.2.3 -(-4)^{2}-\sqrt{62}-(-2)^{3} \) - Calculation: \[ -(-4)^{2} = -16 \] \[ -\sqrt{62} \text{ (keep it as is for now)} \] \[ -(-2)^{3} = 8 \] \[ -16 - \sqrt{62} + 8 = -8 - \sqrt{62} \] - **Final Value**: \(-8 - \sqrt{62}\) 4. **Expression**: \( 3.2.4 \quad \sqrt{ } -4 x -9 + 8^{2} \) - Assuming it means \( -4x - 9 + 8^{2} \) and x is not given, let's calculate: \[ 8^{2} = 64 \] \[ -4x - 9 + 64 = -4x + 55 \] - **Final Value**: \(-4x + 55\) (depends on x) 5. **Expression**: \( 3.2.5 \frac{10-6 \div 2}{-7-(2 \times-7)} \) - Calculation: \[ 6 \div 2 = 3 \Longrightarrow 10 - 3 = 7 \] \[ 2 \times -7 = -14 \Longrightarrow -7 - (-14) = 7 \] \[ \frac{7}{7} = 1 \] - **Final Value**: \(1\) That's how we calculate each expression step by step!