Simplify the expression to \( a+b i \) form: \[ -\sqrt{9}+\sqrt{-98}-\sqrt{1}+\sqrt{-128} \]
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To simplify the expression \( -\sqrt{9}+\sqrt{-98}-\sqrt{1}+\sqrt{-128} \), let's break it down step-by-step. 1. Calculate each square root: - \( -\sqrt{9} = -3 \) - \( \sqrt{-98} = \sqrt{98}i = \sqrt{49 \cdot 2}i = 7\sqrt{2}i \) - \( -\sqrt{1} = -1 \) - \( \sqrt{-128} = \sqrt{128}i = \sqrt{64 \cdot 2}i = 8\sqrt{2}i \) 2. Combine all these results: \[ -3 + 7\sqrt{2}i - 1 + 8\sqrt{2}i \] 3. Combine the real parts and the imaginary parts: - Real part: \( -3 - 1 = -4 \) - Imaginary part: \( 7\sqrt{2}i + 8\sqrt{2}i = 15\sqrt{2}i \) Putting it all together, the expression simplifies to: \[ -4 + 15\sqrt{2}i \] So in \( a + bi \) form, the final answer is: \[ -4 + 15\sqrt{2}i \]