Question
upstudy study bank question image url

\begin{tabular}{l} actorising and Simplifying \\ ool Maths Tuition \\ \( \frac{x^{3}+8}{x^{2}-4} \times \frac{5 x-10}{x^{2}-2 x+4} \) \\ \( \frac{x^{2}-5 x-6}{6 x-6} \times \frac{12 x-12}{x^{2}-1} \) \\ \( \frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{a^{2}-a-12} \) \\ Solve for \( x \) \\ \( \frac{x}{x^{2}-3 x-4}=\frac{3}{x-4}-\frac{1}{2+2 x} \) \\ \hline\end{tabular}

Ask by Paul Ryan. in South Africa
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Simplify the expressions and solve for \( x \) in the last equation. 1. \( \frac{x^{3}+8}{x^{2}-4} \times \frac{5 x-10}{x^{2}-2 x+4} = 5 \) 2. \( \frac{x^{2}-5 x-6}{6 x-6} \times \frac{12 x-12}{x^{2}-1} = \frac{2x-12}{x-1} \) 3. \( \frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{a^{2}-a-12} = \frac{5}{a+3} \) 4. Solve for \( x \): \[ \frac{x}{x^{2}-3 x-4}=\frac{3}{x-4}-\frac{1}{2+2 x} \] Solution: \( x = -\frac{10}{3} \) or \( x = -3.\dot{3} \)

Solution

To solve the given expressions, we will first simplify each expression and then solve for \( x \) in the last expression. 1. Simplify the first expression: \[ \frac{x^{3}+8}{x^{2}-4} \times \frac{5 x-10}{x^{2}-2 x+4} \] 2. Simplify the second expression: \[ \frac{x^{2}-5 x-6}{6 x-6} \times \frac{12 x-12}{x^{2}-1} \] 3. Simplify the third expression: \[ \frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{a^{2}-a-12} \] 4. Solve for \( x \) in the last expression: \[ \frac{x}{x^{2}-3 x-4}=\frac{3}{x-4}-\frac{1}{2+2 x} \] Let's start by simplifying the expressions. Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{3}+8\right)}{\left(x^{2}-4\right)}\times \left(5x-10\right)}{\left(x^{2}-2x+4\right)}\) - step1: Remove the parentheses: \(\frac{\frac{x^{3}+8}{x^{2}-4}\times \left(5x-10\right)}{x^{2}-2x+4}\) - step2: Divide the terms: \(\frac{\frac{x^{2}-2x+4}{x-2}\times \left(5x-10\right)}{x^{2}-2x+4}\) - step3: Multiply the terms: \(\frac{5\left(x^{2}-2x+4\right)}{x^{2}-2x+4}\) - step4: Reduce the fraction: \(5\) The first expression simplifies to \( 5 \). Now, let's simplify the second expression. Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(x^{2}-5x-6\right)}{\left(6x-6\right)}\times \left(12x-12\right)}{\left(x^{2}-1\right)}\) - step1: Remove the parentheses: \(\frac{\frac{x^{2}-5x-6}{6x-6}\times \left(12x-12\right)}{x^{2}-1}\) - step2: Multiply the terms: \(\frac{2\left(x^{2}-5x-6\right)}{x^{2}-1}\) - step3: Factor the expression: \(\frac{2\left(x+1\right)\left(x-6\right)}{\left(x+1\right)\left(x-1\right)}\) - step4: Reduce the fraction: \(\frac{2\left(x-6\right)}{x-1}\) - step5: Simplify: \(\frac{2x-12}{x-1}\) The second expression simplifies to \( \frac{2x-12}{x-1} \). Next, let's simplify the third expression. Simplify the expression by following steps: - step0: Solution: \(\frac{3}{\left(a-4\right)}+\frac{2}{\left(a+3\right)}-\frac{21}{\left(a^{2}-a-12\right)}\) - step1: Remove the parentheses: \(\frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{a^{2}-a-12}\) - step2: Factor the expression: \(\frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{\left(a-4\right)\left(a+3\right)}\) - step3: Reduce fractions to a common denominator: \(\frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)}+\frac{2\left(a-4\right)}{\left(a+3\right)\left(a-4\right)}-\frac{21}{\left(a-4\right)\left(a+3\right)}\) - step4: Rewrite the expression: \(\frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)}+\frac{2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}-\frac{21}{\left(a-4\right)\left(a+3\right)}\) - step5: Transform the expression: \(\frac{3\left(a+3\right)+2\left(a-4\right)-21}{\left(a-4\right)\left(a+3\right)}\) - step6: Multiply the terms: \(\frac{3a+9+2\left(a-4\right)-21}{\left(a-4\right)\left(a+3\right)}\) - step7: Multiply the terms: \(\frac{3a+9+2a-8-21}{\left(a-4\right)\left(a+3\right)}\) - step8: Calculate: \(\frac{5a-20}{\left(a-4\right)\left(a+3\right)}\) - step9: Factor the expression: \(\frac{5\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}\) - step10: Reduce the fraction: \(\frac{5}{a+3}\) The third expression simplifies to \( \frac{5}{a+3} \). Finally, let's solve for \( x \) in the last expression. Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{x}{\left(x^{2}-3x-4\right)}=\frac{3}{\left(x-4\right)}-\frac{1}{\left(2+2x\right)}\) - step1: Find the domain: \(\frac{x}{\left(x^{2}-3x-4\right)}=\frac{3}{\left(x-4\right)}-\frac{1}{\left(2+2x\right)},x \in \left(-\infty,-1\right)\cup \left(-1,4\right)\cup \left(4,+\infty\right)\) - step2: Remove the parentheses: \(\frac{x}{x^{2}-3x-4}=\frac{3}{x-4}-\frac{1}{2+2x}\) - step3: Multiply both sides of the equation by LCD: \(\frac{x}{x^{2}-3x-4}\times 2\left(x^{2}-3x-4\right)=\left(\frac{3}{x-4}-\frac{1}{2+2x}\right)\times 2\left(x^{2}-3x-4\right)\) - step4: Simplify the equation: \(2x=10+5x\) - step5: Move the variable to the left side: \(2x-5x=10\) - step6: Subtract the terms: \(-3x=10\) - step7: Change the signs: \(3x=-10\) - step8: Divide both sides: \(\frac{3x}{3}=\frac{-10}{3}\) - step9: Divide the numbers: \(x=-\frac{10}{3}\) - step10: Check if the solution is in the defined range: \(x=-\frac{10}{3},x \in \left(-\infty,-1\right)\cup \left(-1,4\right)\cup \left(4,+\infty\right)\) - step11: Find the intersection: \(x=-\frac{10}{3}\) The solution for \( x \) in the last expression is \( x = -\frac{10}{3} \) or \( x = -3.\dot{3} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Alright, let’s dive into some fun facts about these mathematical expressions! First off, did you know that factoring polynomials like \( x^3 + 8 \) can be done using the sum of cubes formula? It’s like a secret shortcut! The formula says \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \). For \( x^3 + 2^3 \), just let \( a = x \) and \( b = 2 \). This can make simplifying expressions so much easier and faster—it's like having a mathematical cheat code! Now, when solving equations involving fractions, always remember to find a common denominator first! It’s a common mistake to rush into cross-multiplying. Instead, take time to simplify and combine your fractions. For example, in the expression \( \frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{a^{2}-a-12} \), the denominators might look complicated, but factor them and find the common denominator like you're putting together pieces of a puzzle—everything fits together so nicely!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy