Answer
Simplify the expressions and solve for \( x \) in the last equation.
1. \( \frac{x^{3}+8}{x^{2}-4} \times \frac{5 x-10}{x^{2}-2 x+4} = 5 \)
2. \( \frac{x^{2}-5 x-6}{6 x-6} \times \frac{12 x-12}{x^{2}-1} = \frac{2x-12}{x-1} \)
3. \( \frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{a^{2}-a-12} = \frac{5}{a+3} \)
4. Solve for \( x \):
\[ \frac{x}{x^{2}-3 x-4}=\frac{3}{x-4}-\frac{1}{2+2 x} \]
Solution: \( x = -\frac{10}{3} \) or \( x = -3.\dot{3} \)
Solution
To solve the given expressions, we will first simplify each expression and then solve for \( x \) in the last expression.
1. Simplify the first expression:
\[ \frac{x^{3}+8}{x^{2}-4} \times \frac{5 x-10}{x^{2}-2 x+4} \]
2. Simplify the second expression:
\[ \frac{x^{2}-5 x-6}{6 x-6} \times \frac{12 x-12}{x^{2}-1} \]
3. Simplify the third expression:
\[ \frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{a^{2}-a-12} \]
4. Solve for \( x \) in the last expression:
\[ \frac{x}{x^{2}-3 x-4}=\frac{3}{x-4}-\frac{1}{2+2 x} \]
Let's start by simplifying the expressions.
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\frac{\left(x^{3}+8\right)}{\left(x^{2}-4\right)}\times \left(5x-10\right)}{\left(x^{2}-2x+4\right)}\)
- step1: Remove the parentheses:
\(\frac{\frac{x^{3}+8}{x^{2}-4}\times \left(5x-10\right)}{x^{2}-2x+4}\)
- step2: Divide the terms:
\(\frac{\frac{x^{2}-2x+4}{x-2}\times \left(5x-10\right)}{x^{2}-2x+4}\)
- step3: Multiply the terms:
\(\frac{5\left(x^{2}-2x+4\right)}{x^{2}-2x+4}\)
- step4: Reduce the fraction:
\(5\)
The first expression simplifies to \( 5 \).
Now, let's simplify the second expression.
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\frac{\left(x^{2}-5x-6\right)}{\left(6x-6\right)}\times \left(12x-12\right)}{\left(x^{2}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{\frac{x^{2}-5x-6}{6x-6}\times \left(12x-12\right)}{x^{2}-1}\)
- step2: Multiply the terms:
\(\frac{2\left(x^{2}-5x-6\right)}{x^{2}-1}\)
- step3: Factor the expression:
\(\frac{2\left(x+1\right)\left(x-6\right)}{\left(x+1\right)\left(x-1\right)}\)
- step4: Reduce the fraction:
\(\frac{2\left(x-6\right)}{x-1}\)
- step5: Simplify:
\(\frac{2x-12}{x-1}\)
The second expression simplifies to \( \frac{2x-12}{x-1} \).
Next, let's simplify the third expression.
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3}{\left(a-4\right)}+\frac{2}{\left(a+3\right)}-\frac{21}{\left(a^{2}-a-12\right)}\)
- step1: Remove the parentheses:
\(\frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{a^{2}-a-12}\)
- step2: Factor the expression:
\(\frac{3}{a-4}+\frac{2}{a+3}-\frac{21}{\left(a-4\right)\left(a+3\right)}\)
- step3: Reduce fractions to a common denominator:
\(\frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)}+\frac{2\left(a-4\right)}{\left(a+3\right)\left(a-4\right)}-\frac{21}{\left(a-4\right)\left(a+3\right)}\)
- step4: Rewrite the expression:
\(\frac{3\left(a+3\right)}{\left(a-4\right)\left(a+3\right)}+\frac{2\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}-\frac{21}{\left(a-4\right)\left(a+3\right)}\)
- step5: Transform the expression:
\(\frac{3\left(a+3\right)+2\left(a-4\right)-21}{\left(a-4\right)\left(a+3\right)}\)
- step6: Multiply the terms:
\(\frac{3a+9+2\left(a-4\right)-21}{\left(a-4\right)\left(a+3\right)}\)
- step7: Multiply the terms:
\(\frac{3a+9+2a-8-21}{\left(a-4\right)\left(a+3\right)}\)
- step8: Calculate:
\(\frac{5a-20}{\left(a-4\right)\left(a+3\right)}\)
- step9: Factor the expression:
\(\frac{5\left(a-4\right)}{\left(a-4\right)\left(a+3\right)}\)
- step10: Reduce the fraction:
\(\frac{5}{a+3}\)
The third expression simplifies to \( \frac{5}{a+3} \).
Finally, let's solve for \( x \) in the last expression.
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{x}{\left(x^{2}-3x-4\right)}=\frac{3}{\left(x-4\right)}-\frac{1}{\left(2+2x\right)}\)
- step1: Find the domain:
\(\frac{x}{\left(x^{2}-3x-4\right)}=\frac{3}{\left(x-4\right)}-\frac{1}{\left(2+2x\right)},x \in \left(-\infty,-1\right)\cup \left(-1,4\right)\cup \left(4,+\infty\right)\)
- step2: Remove the parentheses:
\(\frac{x}{x^{2}-3x-4}=\frac{3}{x-4}-\frac{1}{2+2x}\)
- step3: Multiply both sides of the equation by LCD:
\(\frac{x}{x^{2}-3x-4}\times 2\left(x^{2}-3x-4\right)=\left(\frac{3}{x-4}-\frac{1}{2+2x}\right)\times 2\left(x^{2}-3x-4\right)\)
- step4: Simplify the equation:
\(2x=10+5x\)
- step5: Move the variable to the left side:
\(2x-5x=10\)
- step6: Subtract the terms:
\(-3x=10\)
- step7: Change the signs:
\(3x=-10\)
- step8: Divide both sides:
\(\frac{3x}{3}=\frac{-10}{3}\)
- step9: Divide the numbers:
\(x=-\frac{10}{3}\)
- step10: Check if the solution is in the defined range:
\(x=-\frac{10}{3},x \in \left(-\infty,-1\right)\cup \left(-1,4\right)\cup \left(4,+\infty\right)\)
- step11: Find the intersection:
\(x=-\frac{10}{3}\)
The solution for \( x \) in the last expression is \( x = -\frac{10}{3} \) or \( x = -3.\dot{3} \).
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution