The function \( f(x)=\frac{5 x+7}{x-9} \) is one-to-0ne, a. Find an equation for \( f^{-1}(x) \), the inverse function, b. Verify that your equation is correct by showing that \( f\left(f^{-1}(x)\right)=x \) and \( f^{-1}(f(x))=x \). a. Select the correct choice below and fill in the answer box(es) to complete your choice, (Simplify your answers, Use integers or fractions for any numbers in the expression.) A. \( f^{-1}(x)= \) \( \square \) , for all \( x \) B. \( f^{-1}(x)=\frac{9 x+7}{x-5} \), for \( x \neq 5 \) c. \( f^{-1}(x)= \) \( \square \) , for \( x \geq \) \( \square \) D. \( f^{-1}(x)= \) \( \square \) , for \( x \leq \) \( \square \) b. Verify that the equation is correct. (Simplify your answers, Use integers or fractions for any numbers in the expression.) \[ \begin{array}{rlrlrl} f\left(f^{-1}(x)\right) & \equiv f(\square) & \text { and } & f^{-1}(f(x)) & \equiv f^{1}(\square) & \\ & \equiv \square & & \equiv \square & & \text { Substitute. } \\ & & & \text { Simplify. } \end{array} \]
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To find the inverse function \( f^{-1}(x) \), we start by replacing \( f(x) \) with \( y \): \[ y = \frac{5x + 7}{x - 9}. \] Now, we swap \( x \) and \( y \) to find the inverse: \[ x = \frac{5y + 7}{y - 9}. \] Next, we solve for \( y \): 1. Multiply both sides by \( y - 9 \): \[ x(y - 9) = 5y + 7. \] 2. Distributing the \( x \): \[ xy - 9x = 5y + 7. \] 3. Rearranging terms gives: \[ xy - 5y = 9x + 7. \] 4. Factoring out \( y \) from the left-hand side: \[ y(x - 5) = 9x + 7. \] 5. Finally, solving for \( y \), we get: \[ y = \frac{9x + 7}{x - 5}. \] Thus, the inverse function is: B. \( f^{-1}(x)=\frac{9 x+7}{x-5} \), for \( x \neq 5 \). Now, let’s verify that this equation is correct: To verify \( f(f^{-1}(x)) = x \): \[ f(f^{-1}(x)) = f\left(\frac{9x + 7}{x - 5}\right) = \frac{5\left(\frac{9x + 7}{x - 5}\right) + 7}{\left(\frac{9x + 7}{x - 5}\right) - 9}. \] Calculating the numerator: \[ = \frac{\frac{45x + 35}{x - 5} + 7}{\frac{9x + 7 - 9(x - 5)}{x - 5}} = \frac{\frac{45x + 35 + 7(x - 5)}{x-5}}{\frac{9x + 7 - 9x + 45}{x-5}} = \frac{\frac{45x + 35 + 7x - 35}{x-5}}{\frac{52}{x-5}} = \frac{52x}{52} = x. \] Now, to verify \( f^{-1}(f(x)) = x \): \[ f^{-1}(f(x)) = f^{-1}\left(\frac{5x + 7}{x - 9}\right) = \frac{9\left(\frac{5x + 7}{x - 9}\right) + 7}{\frac{5x + 7}{x - 9} - 5}. \] Calculating the numerator: \[ = \frac{\frac{45x + 63}{x - 9} + 7}{\frac{5x + 7 - 5(x - 9)}{x - 9}} = \frac{\frac{45x + 63 + 7(x - 9)}{x-9}}{\frac{5x + 7 - 5x + 45}{x-9}} = \frac{\frac{45x + 63 + 7x - 63}{x-9}}{\frac{52}{x-9}} = \frac{52x}{52} = x. \] Both \( f(f^{-1}(x)) = x \) and \( f^{-1}(f(x)) = x \) hold true, confirming our inverse function is valid.