Part A If 7.2 g of \( \mathrm{CH}_{4} \) and 6.5 g of S react, what is the mass, in grams, of \( \mathrm{H}_{2} \mathrm{~S} \) that is produced? \( \mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{~S}(\mathrm{~g}) \rightarrow \mathrm{CS}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \) Express your answer with the appropriate units. \( \mathrm{m}\left(\mathrm{H}_{2} \mathrm{~S}\right)= \) Value
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
The Deep Dive
To solve for the mass of \( \mathrm{H}_{2} \mathrm{S} \) produced, we first need to identify the limiting reactant in the reaction and then calculate how much \( \mathrm{H}_{2} \mathrm{S} \) can be produced from it. 1. **Calculate moles of reactants:** - For \( \mathrm{CH}_{4} \): \[ \text{Molar mass of } \mathrm{CH}_{4} = 12.01 \, \text{g/mol} + 4 \times 1.008 \, \text{g/mol} \approx 16.04 \, \text{g/mol} \] \[ \text{Moles of } \mathrm{CH}_{4} = \frac{7.2 \, \text{g}}{16.04 \, \text{g/mol}} \approx 0.448 \, \text{mol} \] - For sulfur \( (\mathrm{S}) \): \[ \text{Molar mass of } \mathrm{S} \approx 32.07 \, \text{g/mol} \] \[ \text{Moles of } \mathrm{S} = \frac{6.5 \, \text{g}}{32.07 \, \text{g/mol}} \approx 0.202 \, \text{mol} \] 2. **Determine the limiting reactant:** The balanced equation shows that 1 mole of \( \mathrm{CH}_{4} \) reacts with 4 moles of \( \mathrm{S} \). Therefore, for 0.448 moles of \( \mathrm{CH}_{4} \), we need: \[ 0.448 \, \text{mol} \times 4 = 1.792 \, \text{mol of } \mathrm{S} \] Since we only have 0.202 mol of \( \mathrm{S} \), \( \mathrm{S} \) is the limiting reactant. 3. **Calculate the amount of \( \mathrm{H}_{2} \mathrm{S} \) produced:** From the balanced equation, 4 moles of \( \mathrm{S} \) produce 2 moles of \( \mathrm{H}_{2} \mathrm{S} \). Thus, the amount of \( \mathrm{H}_{2} \mathrm{S} \) produced from 0.202 moles of \( \mathrm{S} \) is: \[ \text{Moles of } \mathrm{H}_{2} \mathrm{S} = \frac{2}{4} \times 0.202 \approx 0.101 \, \text{mol} \] 4. **Convert to grams:** \[ \text{Molar mass of } \mathrm{H}_{2} \mathrm{S} \approx 2 \times 1.008 \, \text{g/mol} + 32.07 \, \text{g/mol} \approx 34.08 \, \text{g/mol} \] \[ \text{Mass of } \mathrm{H}_{2} \mathrm{S} = 0.101 \, \text{mol} \times 34.08 \, \text{g/mol} \approx 3.44 \, \text{g} \] So, the mass of \( \mathrm{H}_{2} \mathrm{S} \) produced is: \[ \mathrm{m}\left(\mathrm{H}_{2} \mathrm{~S}\right) = 3.44 \, \text{g} \]