Question
upstudy study bank question image url

1. Simplify: \( \begin{array}{l}\frac{9^{x}}{27^{x-1}} \\ \frac{3^{2} \times 7^{x-2} \times 3^{2 x}}{7^{5} \times 3^{4 x}} \\ \text { 2. } 3^{n-1}-4.3^{n+1} \\ \frac{5^{n}+5^{n-2}}{5^{n-5}}\end{array} \)

Ask by Best Malone. in South Africa
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. \( \frac{9^{x}}{27^{x-1}} = 3^{-x+3} \) 2. \( \frac{3^{2} \times 7^{x-2} \times 3^{2x}}{7^{5} \times 3^{4x}} = 3^{2-2x} \times 7^{x-7} \) 3. \( 3^{n-1} - 4 \cdot 3^{n+1} = -35 \times 3^{n-1} \) 4. \( \frac{5^{n}+5^{n-2}}{5^{n-5}} = 3250 \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{5^{n}+5^{n-2}}{5^{n-5}}\) - step1: Add the terms: \(\frac{26\times 5^{n-2}}{5^{n-5}}\) - step2: Rewrite the expression: \(26\times 5^{3}\) - step3: Evaluate the power: \(26\times 125\) - step4: Multiply: \(3250\) Calculate or simplify the expression \( \frac{3^{2} \times 7^{x-2} \times 3^{2 x}}{7^{5} \times 3^{4 x}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{3^{2}\times 7^{x-2}\times 3^{2x}}{7^{5}\times 3^{4x}}\) - step1: Multiply by \(a^{-n}:\) \(3^{2}\times 7^{x-2}\times 3^{2x}\times 3^{-4x}\times 7^{-5}\) - step2: Multiply the terms: \(3^{2+2x-4x}\times 7^{x-2}\times 7^{-5}\) - step3: Subtract the terms: \(3^{2-2x}\times 7^{x-2}\times 7^{-5}\) - step4: Multiply the terms: \(3^{2-2x}\times 7^{x-2-5}\) - step5: Subtract the numbers: \(3^{2-2x}\times 7^{x-7}\) Calculate or simplify the expression \( 3^{n-1}-4 \cdot 3^{n+1} \). Simplify the expression by following steps: - step0: Solution: \(3^{n-1}-4\times 3^{n+1}\) - step1: Subtract the terms: \(-35\times 3^{n-1}\) Calculate or simplify the expression \( \frac{9^{x}}{27^{x-1}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{9^{x}}{27^{x-1}}\) - step1: Calculate: \(\frac{\left(3^{2}\right)^{x}}{27^{x-1}}\) - step2: Calculate: \(\frac{\left(3^{2}\right)^{x}}{\left(3^{3}\right)^{x-1}}\) - step3: Calculate: \(\frac{3^{2x}}{\left(3^{3}\right)^{x-1}}\) - step4: Calculate: \(\frac{3^{2x}}{3^{3x-3}}\) - step5: Calculate: \(3^{-x+3}\) Here are the simplified results for each expression: 1. For the expression \( \frac{9^{x}}{27^{x-1}} \): \[ \frac{9^{x}}{27^{x-1}} = 3^{-x+3} \] 2. For the expression \( \frac{3^{2} \times 7^{x-2} \times 3^{2x}}{7^{5} \times 3^{4x}} \): \[ \frac{3^{2} \times 7^{x-2} \times 3^{2x}}{7^{5} \times 3^{4x}} = 3^{2-2x} \times 7^{x-7} \] 3. For the expression \( 3^{n-1} - 4 \cdot 3^{n+1} \): \[ 3^{n-1} - 4 \cdot 3^{n+1} = -35 \times 3^{n-1} \] 4. For the expression \( \frac{5^{n}+5^{n-2}}{5^{n-5}} \): \[ \frac{5^{n}+5^{n-2}}{5^{n-5}} = 3250 \] These are the simplified forms of the given expressions.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To simplify the given expressions, let's tackle them one by one. 1. For the expression \( \frac{9^{x}}{27^{x-1}} \): \[ = \frac{(3^2)^{x}}{(3^3)^{x-1}} = \frac{3^{2x}}{3^{3(x-1)}} = \frac{3^{2x}}{3^{3x - 3}} = 3^{2x - (3x - 3)} = 3^{2x - 3x + 3} = 3^{3 - x}. \] So the simplified form is \( 3^{3 - x} \). 2. For the expression \( \frac{3^{2} \times 7^{x-2} \times 3^{2x}}{7^{5} \times 3^{4x}} \): \[ = \frac{3^{2 + 2x}}{3^{4x}} \cdot \frac{7^{x-2}}{7^5} = 3^{(2 + 2x) - 4x} \cdot 7^{(x-2) - 5} = 3^{2 - 2x} \cdot 7^{x - 7}. \] 3. For the expression \( 3^{n-1} - 4 \cdot 3^{n+1} \): This can be factored: \[ = 3^{n-1} - 4 \cdot 3^{n} = 3^{n-1}(1 - 4 \cdot 3) = 3^{n-1}(1 - 12) = -11 \cdot 3^{n-1}. \] 4. For the expression \( \frac{5^{n}+5^{n-2}}{5^{n-5}} \): \[ = \frac{5^n(1 + 5^{-2})}{5^{n-5}} = 5^5(1 + \frac{1}{25}) = 5^5(\frac{26}{25}) = \frac{26 \cdot 5^5}{25}. \] Summarizing results: 1. \( 3^{3 - x} \) 2. \( 3^{2 - 2x} \cdot 7^{x - 7} \) 3. \( -11 \cdot 3^{n-1} \) 4. \( \frac{26 \cdot 5^5}{25} \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy