1. Simplify: \( \begin{array}{l}\frac{9^{x}}{27^{x-1}} \\ \frac{3^{2} \times 7^{x-2} \times 3^{2 x}}{7^{5} \times 3^{4 x}} \\ \text { 2. } 3^{n-1}-4.3^{n+1} \\ \frac{5^{n}+5^{n-2}}{5^{n-5}}\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To simplify the given expressions, let's tackle them one by one. 1. For the expression \( \frac{9^{x}}{27^{x-1}} \): \[ = \frac{(3^2)^{x}}{(3^3)^{x-1}} = \frac{3^{2x}}{3^{3(x-1)}} = \frac{3^{2x}}{3^{3x - 3}} = 3^{2x - (3x - 3)} = 3^{2x - 3x + 3} = 3^{3 - x}. \] So the simplified form is \( 3^{3 - x} \). 2. For the expression \( \frac{3^{2} \times 7^{x-2} \times 3^{2x}}{7^{5} \times 3^{4x}} \): \[ = \frac{3^{2 + 2x}}{3^{4x}} \cdot \frac{7^{x-2}}{7^5} = 3^{(2 + 2x) - 4x} \cdot 7^{(x-2) - 5} = 3^{2 - 2x} \cdot 7^{x - 7}. \] 3. For the expression \( 3^{n-1} - 4 \cdot 3^{n+1} \): This can be factored: \[ = 3^{n-1} - 4 \cdot 3^{n} = 3^{n-1}(1 - 4 \cdot 3) = 3^{n-1}(1 - 12) = -11 \cdot 3^{n-1}. \] 4. For the expression \( \frac{5^{n}+5^{n-2}}{5^{n-5}} \): \[ = \frac{5^n(1 + 5^{-2})}{5^{n-5}} = 5^5(1 + \frac{1}{25}) = 5^5(\frac{26}{25}) = \frac{26 \cdot 5^5}{25}. \] Summarizing results: 1. \( 3^{3 - x} \) 2. \( 3^{2 - 2x} \cdot 7^{x - 7} \) 3. \( -11 \cdot 3^{n-1} \) 4. \( \frac{26 \cdot 5^5}{25} \)