Question
upstudy study bank question image url

Simplify the following expression completely: \[ \frac{2 x-6 y}{4 x-12 y}, \quad x \neq 3 y \] Answer: The simplified fraction is: \[ \quad x \neq 3 y \]

Ask by Salinas Sullivan. in South Africa
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified fraction is \( \frac{1}{2} \).

Solution

Calculate or simplify the expression \( \frac{2x-6y}{4x-12y} \). Simplify the expression by following steps: - step0: Solution: \(\frac{2x-6y}{4x-12y}\) - step1: Factor the expression: \(\frac{2x-6y}{2\left(2x-6y\right)}\) - step2: Reduce the fraction: \(\frac{1}{2}\) The simplified expression is \( \frac{1}{2} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression \(\frac{2x - 6y}{4x - 12y}\), we begin by factoring both the numerator and the denominator. The numerator can be factored as \(2(x - 3y)\) and the denominator as \(4(x - 3y)\). This gives us: \[ \frac{2(x - 3y)}{4(x - 3y)} \] Now, we can cancel out the common factor \(x - 3y\) (keeping in mind that \(x \neq 3y\)): \[ \frac{2}{4} = \frac{1}{2} \] Thus, the simplified fraction is: \[ \frac{1}{2} \quad (x \neq 3y) \] When working through algebraic simplifications, a common mistake is neglecting to consider restrictions on the variable involved. Here, since we cancelled \(x - 3y\), we've introduced a caveat that \(x\) must not equal \(3y\). Ignoring such conditions can lead to undefined expressions. For further understanding of fractions, you might want to check out resources on rational expressions and their simplification methods. Books focusing on algebra often have practice problems that can sharpen your skills in factoring and reducing expressions effectively!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy