Question
upstudy study bank question image url

20. \( -5 x(-2 x y z)^{0} \) 21. \( \frac{7 a^{2} b^{-3} \times 3 a^{-3} b^{0}}{14 a^{-1} b} \) 22. \( \frac{16 a b^{-2} \times 125 a^{-1} b^{3}}{80 a^{2} b^{5}} \) 23. \( 5\left(2 p q^{3}\right)\left(3 p q^{-2}\right) \) 24. \( \sqrt{5 a p^{2}} \times \sqrt{20 a^{3}} \) 25. \( \frac{8 x^{2} y^{-1} \times 3 x^{3} y^{-5}}{} \)

Ask by Sherman Lambert. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each expression: 20. \( -5x \) 21. \( \frac{3}{2b^{4}} \) 22. \( \frac{25}{a^{2}b^{4}} \) 23. \( 30p^{2}q \) 24. \( 10pa^{2} \) 25. \( \frac{24x^{5}}{y^{6}} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(-5x\left(-2xyz\right)^{0}\) - step1: Multiply the terms: \(-5x\) Calculate or simplify the expression \( (16 * a * b^{-2} * 125 * a^{-1} * b^{3}) / (80 * a^{2} * b^{5}) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(16ab^{-2}\times 125a^{-1}b^{3}\right)}{\left(80a^{2}b^{5}\right)}\) - step1: Evaluate: \(\frac{\left(16ab^{-2}\times 125a^{-1}b^{3}\right)}{80a^{2}b^{5}}\) - step2: Remove the parentheses: \(\frac{16ab^{-2}\times 125a^{-1}b^{3}}{80a^{2}b^{5}}\) - step3: Multiply: \(\frac{2000b}{80a^{2}b^{5}}\) - step4: Reduce the fraction: \(\frac{25}{a^{2}b^{4}}\) Calculate or simplify the expression \( 5 * (2 * p * q^{3}) * (3 * p * q^{-2}) \). Simplify the expression by following steps: - step0: Solution: \(5\left(2pq^{3}\right)\left(3pq^{-2}\right)\) - step1: Evaluate: \(5\times 2pq^{3}\left(3pq^{-2}\right)\) - step2: Remove the parentheses: \(5\times 2pq^{3}\times 3pq^{-2}\) - step3: Multiply the terms: \(30pq^{3}pq^{-2}\) - step4: Multiply the terms: \(30p^{2}q^{3}\times q^{-2}\) - step5: Multiply the terms: \(30p^{2}q^{3-2}\) - step6: Subtract the numbers: \(30p^{2}q\) Calculate or simplify the expression \( \sqrt(5 * a * p^{2}) * \sqrt(20 * a^{3}) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{5ap^{2}}\times \sqrt{20a^{3}}\) - step1: Simplify the root: \(p\sqrt{5a}\times \sqrt{20a^{3}}\) - step2: Simplify the root: \(p\sqrt{5a}\times 2a\sqrt{5a}\) - step3: Calculate: \(p\times 2a\times 5a\) - step4: Multiply the terms: \(10pa\times a\) - step5: Multiply the terms: \(10pa^{2}\) Calculate or simplify the expression \( (8 * x^{2} * y^{-1} * 3 * x^{3} * y^{-5}) \). Simplify the expression by following steps: - step0: Solution: \(\left(8x^{2}y^{-1}\times 3x^{3}y^{-5}\right)\) - step1: Evaluate: \(8x^{2}y^{-1}\times 3x^{3}y^{-5}\) - step2: Multiply the terms: \(24x^{2}y^{-1}x^{3}y^{-5}\) - step3: Multiply the terms: \(24x^{2+3}y^{-1}\times y^{-5}\) - step4: Add the numbers: \(24x^{5}y^{-1}\times y^{-5}\) - step5: Multiply the terms: \(24x^{5}y^{-1-5}\) - step6: Subtract the numbers: \(24x^{5}y^{-6}\) - step7: Simplify: \(\frac{24x^{5}}{y^{6}}\) Calculate or simplify the expression \( (7 * a^{2} * b^{-3} * 3 * a^{-3} * b^{0}) / (14 * a^{-1} * b) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(7a^{2}b^{-3}\times 3a^{-3}b^{0}\right)}{\left(14a^{-1}b\right)}\) - step1: Remove the parentheses: \(\frac{7a^{2}b^{-3}\times 3a^{-3}b^{0}}{14a^{-1}b}\) - step2: Multiply by \(a^{-n}:\) \(\frac{7a^{2}b^{-3}\times 3a^{-3}b^{0}ab^{-1}}{14}\) - step3: Evaluate the power: \(\frac{7a^{2}b^{-3}\times 3a^{-3}\times 1\times ab^{-1}}{14}\) - step4: Calculate: \(\frac{7a^{2}b^{-3}\times 3a^{-3}\times ab^{-1}}{14}\) - step5: Multiply: \(\frac{21b^{-4}}{14}\) - step6: Reduce the fraction: \(\frac{3b^{-4}}{2}\) - step7: Rewrite the expression: \(\frac{\frac{3}{b^{4}}}{2}\) - step8: Simplify: \(\frac{3}{2b^{4}}\) Here are the simplified results for each expression: 20. For the expression \( -5 x(-2 x y z)^{0} \): - Since any non-zero number raised to the power of 0 is 1, we have: \[ -5 x(-2 x y z)^{0} = -5 x \cdot 1 = -5x \] 21. For the expression \( \frac{7 a^{2} b^{-3} \times 3 a^{-3} b^{0}}{14 a^{-1} b} \): - Simplifying the numerator: \[ 7 a^{2} b^{-3} \times 3 a^{-3} b^{0} = 21 a^{2 - 3} b^{-3 + 0} = 21 a^{-1} b^{-3} \] - Now simplifying the entire expression: \[ \frac{21 a^{-1} b^{-3}}{14 a^{-1} b} = \frac{21}{14} \cdot \frac{a^{-1}}{a^{-1}} \cdot \frac{b^{-3}}{b} = \frac{3}{2b^{4}} \] 22. For the expression \( \frac{16 a b^{-2} \times 125 a^{-1} b^{3}}{80 a^{2} b^{5}} \): - Simplifying the numerator: \[ 16 a b^{-2} \times 125 a^{-1} b^{3} = 2000 a^{1 - 1} b^{-2 + 3} = 2000 b^{1} \] - Now simplifying the entire expression: \[ \frac{2000 b}{80 a^{2} b^{5}} = \frac{2000}{80} \cdot \frac{b}{b^{5}} = \frac{25}{a^{2}b^{4}} \] 23. For the expression \( 5\left(2 p q^{3}\right)\left(3 p q^{-2}\right) \): - Simplifying: \[ 5 \cdot 2 p q^{3} \cdot 3 p q^{-2} = 30 p^{1 + 1} q^{3 - 2} = 30 p^{2} q \] 24. For the expression \( \sqrt{5 a p^{2}} \times \sqrt{20 a^{3}} \): - Using the property of square roots: \[ \sqrt{5 a p^{2} \cdot 20 a^{3}} = \sqrt{100 a^{4} p^{2}} = 10 a^{2} p \] 25. For the expression \( \frac{8 x^{2} y^{-1} \times 3 x^{3} y^{-5}}{} \): - Simplifying the numerator: \[ 8 x^{2} y^{-1} \times 3 x^{3} y^{-5} = 24 x^{2 + 3} y^{-1 - 5} = 24 x^{5} y^{-6} \] - Since there is no denominator, the result is: \[ \frac{24 x^{5}}{y^{6}} \] ### Summary of Results: - 20: \( -5x \) - 21: \( \frac{3}{2b^{4}} \) - 22: \( \frac{25}{a^{2}b^{4}} \) - 23: \( 30p^{2}q \) - 24: \( 10pa^{2} \) - 25: \( \frac{24x^{5}}{y^{6}} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

For the expression \( -5 x(-2 x y z)^{0} \), since anything raised to the power of zero is 1, this simplifies to \( -5 x \cdot 1 \), leading to the final answer of \( -5x \). It's a clean and quick way to eliminate complexities in calculations! Now, if you're diving into \( \frac{7 a^{2} b^{-3} \times 3 a^{-3} b^{0}}{14 a^{-1} b} \), pay attention to the negative exponents! You can convert them to positive by moving them across the fraction line. This will simplify your life; just remember to combine like terms carefully!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy