Question
20. \( -5 x(-2 x y z)^{0} \) 21. \( \frac{7 a^{2} b^{-3} \times 3 a^{-3} b^{0}}{14 a^{-1} b} \) 22. \( \frac{16 a b^{-2} \times 125 a^{-1} b^{3}}{80 a^{2} b^{5}} \) 23. \( 5\left(2 p q^{3}\right)\left(3 p q^{-2}\right) \) 24. \( \sqrt{5 a p^{2}} \times \sqrt{20 a^{3}} \) 25. \( \frac{8 x^{2} y^{-1} \times 3 x^{3} y^{-5}}{} \)
Ask by Sherman Lambert. in South Africa
Feb 26,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
Here are the simplified results for each expression:
20. \( -5x \)
21. \( \frac{3}{2b^{4}} \)
22. \( \frac{25}{a^{2}b^{4}} \)
23. \( 30p^{2}q \)
24. \( 10pa^{2} \)
25. \( \frac{24x^{5}}{y^{6}} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(-5x\left(-2xyz\right)^{0}\)
- step1: Multiply the terms:
\(-5x\)
Calculate or simplify the expression \( (16 * a * b^{-2} * 125 * a^{-1} * b^{3}) / (80 * a^{2} * b^{5}) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(16ab^{-2}\times 125a^{-1}b^{3}\right)}{\left(80a^{2}b^{5}\right)}\)
- step1: Evaluate:
\(\frac{\left(16ab^{-2}\times 125a^{-1}b^{3}\right)}{80a^{2}b^{5}}\)
- step2: Remove the parentheses:
\(\frac{16ab^{-2}\times 125a^{-1}b^{3}}{80a^{2}b^{5}}\)
- step3: Multiply:
\(\frac{2000b}{80a^{2}b^{5}}\)
- step4: Reduce the fraction:
\(\frac{25}{a^{2}b^{4}}\)
Calculate or simplify the expression \( 5 * (2 * p * q^{3}) * (3 * p * q^{-2}) \).
Simplify the expression by following steps:
- step0: Solution:
\(5\left(2pq^{3}\right)\left(3pq^{-2}\right)\)
- step1: Evaluate:
\(5\times 2pq^{3}\left(3pq^{-2}\right)\)
- step2: Remove the parentheses:
\(5\times 2pq^{3}\times 3pq^{-2}\)
- step3: Multiply the terms:
\(30pq^{3}pq^{-2}\)
- step4: Multiply the terms:
\(30p^{2}q^{3}\times q^{-2}\)
- step5: Multiply the terms:
\(30p^{2}q^{3-2}\)
- step6: Subtract the numbers:
\(30p^{2}q\)
Calculate or simplify the expression \( \sqrt(5 * a * p^{2}) * \sqrt(20 * a^{3}) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{5ap^{2}}\times \sqrt{20a^{3}}\)
- step1: Simplify the root:
\(p\sqrt{5a}\times \sqrt{20a^{3}}\)
- step2: Simplify the root:
\(p\sqrt{5a}\times 2a\sqrt{5a}\)
- step3: Calculate:
\(p\times 2a\times 5a\)
- step4: Multiply the terms:
\(10pa\times a\)
- step5: Multiply the terms:
\(10pa^{2}\)
Calculate or simplify the expression \( (8 * x^{2} * y^{-1} * 3 * x^{3} * y^{-5}) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(8x^{2}y^{-1}\times 3x^{3}y^{-5}\right)\)
- step1: Evaluate:
\(8x^{2}y^{-1}\times 3x^{3}y^{-5}\)
- step2: Multiply the terms:
\(24x^{2}y^{-1}x^{3}y^{-5}\)
- step3: Multiply the terms:
\(24x^{2+3}y^{-1}\times y^{-5}\)
- step4: Add the numbers:
\(24x^{5}y^{-1}\times y^{-5}\)
- step5: Multiply the terms:
\(24x^{5}y^{-1-5}\)
- step6: Subtract the numbers:
\(24x^{5}y^{-6}\)
- step7: Simplify:
\(\frac{24x^{5}}{y^{6}}\)
Calculate or simplify the expression \( (7 * a^{2} * b^{-3} * 3 * a^{-3} * b^{0}) / (14 * a^{-1} * b) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(7a^{2}b^{-3}\times 3a^{-3}b^{0}\right)}{\left(14a^{-1}b\right)}\)
- step1: Remove the parentheses:
\(\frac{7a^{2}b^{-3}\times 3a^{-3}b^{0}}{14a^{-1}b}\)
- step2: Multiply by \(a^{-n}:\)
\(\frac{7a^{2}b^{-3}\times 3a^{-3}b^{0}ab^{-1}}{14}\)
- step3: Evaluate the power:
\(\frac{7a^{2}b^{-3}\times 3a^{-3}\times 1\times ab^{-1}}{14}\)
- step4: Calculate:
\(\frac{7a^{2}b^{-3}\times 3a^{-3}\times ab^{-1}}{14}\)
- step5: Multiply:
\(\frac{21b^{-4}}{14}\)
- step6: Reduce the fraction:
\(\frac{3b^{-4}}{2}\)
- step7: Rewrite the expression:
\(\frac{\frac{3}{b^{4}}}{2}\)
- step8: Simplify:
\(\frac{3}{2b^{4}}\)
Here are the simplified results for each expression:
20. For the expression \( -5 x(-2 x y z)^{0} \):
- Since any non-zero number raised to the power of 0 is 1, we have:
\[
-5 x(-2 x y z)^{0} = -5 x \cdot 1 = -5x
\]
21. For the expression \( \frac{7 a^{2} b^{-3} \times 3 a^{-3} b^{0}}{14 a^{-1} b} \):
- Simplifying the numerator:
\[
7 a^{2} b^{-3} \times 3 a^{-3} b^{0} = 21 a^{2 - 3} b^{-3 + 0} = 21 a^{-1} b^{-3}
\]
- Now simplifying the entire expression:
\[
\frac{21 a^{-1} b^{-3}}{14 a^{-1} b} = \frac{21}{14} \cdot \frac{a^{-1}}{a^{-1}} \cdot \frac{b^{-3}}{b} = \frac{3}{2b^{4}}
\]
22. For the expression \( \frac{16 a b^{-2} \times 125 a^{-1} b^{3}}{80 a^{2} b^{5}} \):
- Simplifying the numerator:
\[
16 a b^{-2} \times 125 a^{-1} b^{3} = 2000 a^{1 - 1} b^{-2 + 3} = 2000 b^{1}
\]
- Now simplifying the entire expression:
\[
\frac{2000 b}{80 a^{2} b^{5}} = \frac{2000}{80} \cdot \frac{b}{b^{5}} = \frac{25}{a^{2}b^{4}}
\]
23. For the expression \( 5\left(2 p q^{3}\right)\left(3 p q^{-2}\right) \):
- Simplifying:
\[
5 \cdot 2 p q^{3} \cdot 3 p q^{-2} = 30 p^{1 + 1} q^{3 - 2} = 30 p^{2} q
\]
24. For the expression \( \sqrt{5 a p^{2}} \times \sqrt{20 a^{3}} \):
- Using the property of square roots:
\[
\sqrt{5 a p^{2} \cdot 20 a^{3}} = \sqrt{100 a^{4} p^{2}} = 10 a^{2} p
\]
25. For the expression \( \frac{8 x^{2} y^{-1} \times 3 x^{3} y^{-5}}{} \):
- Simplifying the numerator:
\[
8 x^{2} y^{-1} \times 3 x^{3} y^{-5} = 24 x^{2 + 3} y^{-1 - 5} = 24 x^{5} y^{-6}
\]
- Since there is no denominator, the result is:
\[
\frac{24 x^{5}}{y^{6}}
\]
### Summary of Results:
- 20: \( -5x \)
- 21: \( \frac{3}{2b^{4}} \)
- 22: \( \frac{25}{a^{2}b^{4}} \)
- 23: \( 30p^{2}q \)
- 24: \( 10pa^{2} \)
- 25: \( \frac{24x^{5}}{y^{6}} \)
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Beyond the Answer
For the expression \( -5 x(-2 x y z)^{0} \), since anything raised to the power of zero is 1, this simplifies to \( -5 x \cdot 1 \), leading to the final answer of \( -5x \). It's a clean and quick way to eliminate complexities in calculations! Now, if you're diving into \( \frac{7 a^{2} b^{-3} \times 3 a^{-3} b^{0}}{14 a^{-1} b} \), pay attention to the negative exponents! You can convert them to positive by moving them across the fraction line. This will simplify your life; just remember to combine like terms carefully!