Question
upstudy study bank question image url

\( \int \sinh ( 4 x - 5 ) d x \)

Ask by Wheeler Grant. in Puerto Rico
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral de sinh(4x - 5) dx es (1/4) cosh(4x - 5) + C.

Solution

Para resolver la integral ∫ sinh(4x - 5) dx, realizamos el cambio de variable: 1. Sea u = 4x - 5, de donde se sigue que du/dx = 4, lo que implica que dx = du/4. 2. Sustituyendo en la integral: ∫ sinh(4x - 5) dx = ∫ sinh(u) (du/4) = (1/4) ∫ sinh(u) du. 3. La integral de sinh(u) es cosh(u), es decir, ∫ sinh(u) du = cosh(u) + C. 4. Por lo tanto, la solución es: (1/4) cosh(u) + C. 5. Reemplazamos u por 4x - 5: (1/4) cosh(4x - 5) + C. Así, el resultado final es: (1/4) cosh(4x - 5) + C.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the integral \( \int \sinh ( 4 x - 5 ) d x \), you can use a simple substitution. Let \( u = 4x - 5 \). Then, \( du = 4dx \) or \( dx = \frac{du}{4} \). Changing the variable in the integral, we can write: \[ \int \sinh(u) \frac{du}{4} = \frac{1}{4} \int \sinh(u) \, du \] The integral of \( \sinh(u) \) is \( \cosh(u) + C\). Thus, we have: \[ \frac{1}{4} (\cosh(u) + C) = \frac{1}{4} \cosh(4x - 5) + C \] So the final answer is: \[ \int \sinh(4x - 5) \, dx = \frac{1}{4} \cosh(4x - 5) + C \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy