Question
upstudy study bank question image url

\( \left. \begin{array} { l } { ( a b + 2 ) ( a b - 2 ) } \\ { ( a ^ { 2 } + b ^ { 2 } ) ( a ^ { 2 } - b ^ { 2 } ) } \\ { ( 5 a x + y ) ( 5 a x - y ) } \\ { ( 0,2 + a ^ { 3 } ) ( 0,2 - a ^ { 3 } ) } \\ { ( a x + b y + c ) ( a x + b y - c ) } \\ { ( a + 8 ) ( a - 6 ) } \\ { ( y + 10 ) ( y + 12 ) } \\ { ( x + 2 y ) ( x + 3 y ) } \\ { ( a - 3 b ) ( a + 5 b ) } \\ { ( a b + 2 c ) ( a b - 4 c ) } \end{array} \right. \)

Ask by Bowers Best. in Ecuador
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. \( a^2b^2 - 4 \) 2. \( a^4 - b^4 \) 3. \( 25a^2x^2 - y^2 \) 4. \( 0.04 - a^6 \) 5. \( (ax + by)^2 - c^2 \) 6. \( a^2 + 2a - 48 \) 7. \( y^2 + 22y + 120 \) 8. \( x^2 + 5xy + 6y^2 \) 9. \( a^2 + 2ab - 15b^2 \) 10. \( a^2b^2 - 16c^2 \)

Solution

Para resolver las expresiones dadas, aplicaremos la propiedad de la diferencia de cuadrados, que establece que \( (x + y)(x - y) = x^2 - y^2 \). Vamos a aplicar esta propiedad a cada una de las expresiones. 1. **\( (ab + 2)(ab - 2) \)**: \[ = (ab)^2 - 2^2 = a^2b^2 - 4 \] 2. **\( (a^2 + b^2)(a^2 - b^2) \)**: \[ = (a^2)^2 - (b^2)^2 = a^4 - b^4 \] 3. **\( (5ax + y)(5ax - y) \)**: \[ = (5ax)^2 - y^2 = 25a^2x^2 - y^2 \] 4. **\( (0.2 + a^3)(0.2 - a^3) \)**: \[ = (0.2)^2 - (a^3)^2 = 0.04 - a^6 \] 5. **\( (ax + by + c)(ax + by - c) \)**: \[ = (ax + by)^2 - c^2 = (ax + by)^2 - c^2 \] 6. **\( (a + 8)(a - 6) \)**: Esta expresión no se puede simplificar usando la diferencia de cuadrados, pero se puede expandir: \[ = a^2 + 8a - 6a - 48 = a^2 + 2a - 48 \] 7. **\( (y + 10)(y + 12) \)**: Esta expresión se puede expandir: \[ = y^2 + 12y + 10y + 120 = y^2 + 22y + 120 \] 8. **\( (x + 2y)(x + 3y) \)**: Esta expresión se puede expandir: \[ = x^2 + 3xy + 2xy + 6y^2 = x^2 + 5xy + 6y^2 \] 9. **\( (a - 3b)(a + 5b) \)**: Esta expresión se puede expandir: \[ = a^2 + 5ab - 3ab - 15b^2 = a^2 + 2ab - 15b^2 \] 10. **\( (ab + 2c)(ab - 4c) \)**: \[ = (ab)^2 - (4c)^2 = a^2b^2 - 16c^2 \] Ahora, resumiendo los resultados: 1. \( a^2b^2 - 4 \) 2. \( a^4 - b^4 \) 3. \( 25a^2x^2 - y^2 \) 4. \( 0.04 - a^6 \) 5. \( (ax + by)^2 - c^2 \) 6. \( a^2 + 2a - 48 \) 7. \( y^2 + 22y + 120 \) 8. \( x^2 + 5xy + 6y^2 \) 9. \( a^2 + 2ab - 15b^2 \) 10. \( a^2b^2 - 16c^2 \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Let’s take a delightful plunge into the world of algebra! For your first equation, \( (ab + 2)(ab - 2) \) is a classic example of the difference of squares, which simplifies neatly to \( (ab)^2 - 2^2 = a^2b^2 - 4 \). These clever patterns make factoring such expressions a breeze! Next up, consider \( ( ax + by + c)( ax + by - c) \). This too is a difference of squares and simplifies beautifully to \( (ax + by)^2 - c^2 \). With these factored forms, you're not just solving equations—you're unlocking the secrets of algebraic identities! Keep exploring these relationships, and math will become your best pal!

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy