Answer
Voici les primitives des intégrales demandées :
a) \( \int\left(x^{2}-3 x+4\right)^{5}(4 x-6) d x = \frac{(x^{2}-3x+4)^{6}}{3} + C \)
b) \( \int \sin ^{7} x \cos x d x = \frac{1}{8}\sin^{8}(x) + C \)
c) \( \int \frac{\sin x}{\cos x} d x = \ln{(\left|\sec(x)\right|)} + C \)
d) \( \int \frac{9 x^{2}-6}{x^{3}-2 x+5} d x = 3\ln{(\left|x^{3}-2x+5\right|)} + C \)
e) \( \int \frac{3 x}{\sqrt{x^{2}-2}} d x = 3\sqrt{x^{2}-2} + C \)
f) \( \int e^{2 x^{2}-4 x}(x-1) d x = \frac{e^{2x^{2}-4x}}{4} + C \)
g) \( \int \frac{3}{1-\sin ^{2} x} d x = 3\tan(x) + C \)
h) \( \int \frac{2 x}{\sqrt{2-x^{2}}} d x = -\sqrt{2-x^{2}} + C \)
i) \( \int_{-1}^{1} \frac{x}{\left(x^{2}-4\right)^{4}} d x = 0 \)
Ces primitives sont obtenues en utilisant des méthodes de substitution et d'intégration par parties.
Solution
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int_{-1}^{1} \frac{x}{\left(x^{2}-4\right)^{4}} dx\)
- step1: Evaluate the integral:
\(\int \frac{x}{\left(x^{2}-4\right)^{4}} dx\)
- step2: Use the substitution \(dx=\frac{1}{2x} dt\) to transform the integral\(:\)
\(\int \frac{x}{\left(x^{2}-4\right)^{4}}\times \frac{1}{2x} dt\)
- step3: Simplify:
\(\int \frac{1}{2\left(x^{2}-4\right)^{4}} dt\)
- step4: Use the substitution \(t=x^{2}\) to transform the integral\(:\)
\(\int \frac{1}{2\left(t-4\right)^{4}} dt\)
- step5: Rewrite the expression:
\(\int \frac{1}{2}\times \frac{1}{\left(t-4\right)^{4}} dt\)
- step6: Use properties of integrals:
\(\frac{1}{2}\times \int \frac{1}{\left(t-4\right)^{4}} dt\)
- step7: Use the substitution \(dt=1 dv\) to transform the integral\(:\)
\(\frac{1}{2}\times \int \frac{1}{\left(t-4\right)^{4}}\times 1 dv\)
- step8: Simplify:
\(\frac{1}{2}\times \int \frac{1}{\left(t-4\right)^{4}} dv\)
- step9: Use the substitution \(v=t-4\) to transform the integral\(:\)
\(\frac{1}{2}\times \int \frac{1}{v^{4}} dv\)
- step10: Evaluate the integral:
\(\frac{1}{2}\times \frac{v^{-4+1}}{-4+1}\)
- step11: Simplify:
\(\frac{1}{2}\times \frac{v^{-3}}{-3}\)
- step12: Rewrite the expression:
\(\frac{1}{2}\left(-\frac{v^{-3}}{3}\right)\)
- step13: Multiply the terms:
\(-\frac{1}{2}\times \frac{v^{-3}}{3}\)
- step14: Multiply the terms:
\(-\frac{v^{-3}}{2\times 3}\)
- step15: Multiply the terms:
\(-\frac{v^{-3}}{6}\)
- step16: Simplify:
\(-\frac{1}{6v^{3}}\)
- step17: Substitute back:
\(-\frac{1}{6\left(t-4\right)^{3}}\)
- step18: Substitute back:
\(-\frac{1}{6\left(x^{2}-4\right)^{3}}\)
- step19: Return the limits:
\(\left(-\frac{1}{6\left(x^{2}-4\right)^{3}}\right)\bigg |_{-1}^{1}\)
- step20: Calculate the value:
\(0\)
Calculate the integral \( \int \frac{9 x^{2}-6}{x^{3}-2 x+5} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{9x^{2}-6}{x^{3}-2x+5} dx\)
- step1: Use the substitution \(dx=\frac{1}{3x^{2}-2} dt\) to transform the integral\(:\)
\(\int \frac{9x^{2}-6}{x^{3}-2x+5}\times \frac{1}{3x^{2}-2} dt\)
- step2: Simplify:
\(\int \frac{3}{x^{3}-2x+5} dt\)
- step3: Use the substitution \(t=x^{3}-2x+5\) to transform the integral\(:\)
\(\int \frac{3}{t} dt\)
- step4: Rewrite the expression:
\(\int 3\times \frac{1}{t} dt\)
- step5: Use properties of integrals:
\(3\times \int \frac{1}{t} dt\)
- step6: Evaluate the integral:
\(3\ln{\left(\left|t\right|\right)}\)
- step7: Substitute back:
\(3\ln{\left(\left|x^{3}-2x+5\right|\right)}\)
- step8: Add the constant of integral C:
\(3\ln{\left(\left|x^{3}-2x+5\right|\right)} + C, C \in \mathbb{R}\)
Calculate the integral \( \int \sin ^{7} x \cos x d x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \sin^{7}\left(x\right)\cos\left(x\right) dx\)
- step1: Evaluate the integral:
\(\frac{\sin^{7+1}\left(x\right)}{7+1}\)
- step2: Add the numbers:
\(\frac{\sin^{8}\left(x\right)}{7+1}\)
- step3: Add the numbers:
\(\frac{\sin^{8}\left(x\right)}{8}\)
- step4: Simplify the expression:
\(\frac{1}{8}\sin^{8}\left(x\right)\)
- step5: Add the constant of integral C:
\(\frac{1}{8}\sin^{8}\left(x\right) + C, C \in \mathbb{R}\)
Calculate the integral \( \int e^{2 x^{2}-4 x}(x-1) d x \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int e^{2x^{2}-4x}\left(x-1\right) dx\)
- step1: Use the substitution \(dx=\frac{1}{4x-4} dt\) to transform the integral\(:\)
\(\int e^{2x^{2}-4x}\left(x-1\right)\times \frac{1}{4x-4} dt\)
- step2: Simplify:
\(\int \frac{e^{2x^{2}-4x}}{4} dt\)
- step3: Use the substitution \(t=2x^{2}-4x\) to transform the integral\(:\)
\(\int \frac{e^{t}}{4} dt\)
- step4: Rewrite the expression:
\(\int \frac{1}{4}e^{t} dt\)
- step5: Use properties of integrals:
\(\frac{1}{4}\times \int e^{t} dt\)
- step6: Evaluate the integral:
\(\frac{1}{4}e^{t}\)
- step7: Multiply the terms:
\(\frac{e^{t}}{4}\)
- step8: Substitute back:
\(\frac{e^{2x^{2}-4x}}{4}\)
- step9: Add the constant of integral C:
\(\frac{e^{2x^{2}-4x}}{4} + C, C \in \mathbb{R}\)
Calculate the integral \( \int \frac{3 x}{\sqrt{x^{2}-2}} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{3x}{\sqrt{x^{2}-2}} dx\)
- step1: Rewrite the expression:
\(\int 3\times \frac{x}{\sqrt{x^{2}-2}} dx\)
- step2: Use properties of integrals:
\(3\times \int \frac{x}{\sqrt{x^{2}-2}} dx\)
- step3: Rewrite the expression:
\(3\times \int \frac{x}{\left(x^{2}-2\right)^{\frac{1}{2}}} dx\)
- step4: Use the substitution \(dx=\frac{1}{2x} dt\) to transform the integral\(:\)
\(3\times \int \frac{x}{\left(x^{2}-2\right)^{\frac{1}{2}}}\times \frac{1}{2x} dt\)
- step5: Simplify:
\(3\times \int \frac{1}{2\left(x^{2}-2\right)^{\frac{1}{2}}} dt\)
- step6: Use the substitution \(t=x^{2}\) to transform the integral\(:\)
\(3\times \int \frac{1}{2\left(t-2\right)^{\frac{1}{2}}} dt\)
- step7: Rewrite the expression:
\(3\times \int \frac{1}{2}\times \frac{1}{\left(t-2\right)^{\frac{1}{2}}} dt\)
- step8: Use properties of integrals:
\(3\times \frac{1}{2}\times \int \frac{1}{\left(t-2\right)^{\frac{1}{2}}} dt\)
- step9: Multiply:
\(\frac{3}{2}\times \int \frac{1}{\left(t-2\right)^{\frac{1}{2}}} dt\)
- step10: Use the substitution \(dt=1 dv\) to transform the integral\(:\)
\(\frac{3}{2}\times \int \frac{1}{\left(t-2\right)^{\frac{1}{2}}}\times 1 dv\)
- step11: Simplify:
\(\frac{3}{2}\times \int \frac{1}{\left(t-2\right)^{\frac{1}{2}}} dv\)
- step12: Use the substitution \(v=t-2\) to transform the integral\(:\)
\(\frac{3}{2}\times \int \frac{1}{v^{\frac{1}{2}}} dv\)
- step13: Evaluate the integral:
\(\frac{3}{2}\times \frac{v^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\)
- step14: Simplify:
\(\frac{3}{2}\times \frac{v^{\frac{1}{2}}}{\frac{1}{2}}\)
- step15: Multiply the terms:
\(3v^{\frac{1}{2}}\)
- step16: Substitute back:
\(3\left(t-2\right)^{\frac{1}{2}}\)
- step17: Substitute back:
\(3\left(x^{2}-2\right)^{\frac{1}{2}}\)
- step18: Simplify:
\(3\sqrt{x^{2}-2}\)
- step19: Add the constant of integral C:
\(3\sqrt{x^{2}-2} + C, C \in \mathbb{R}\)
Calculate the integral \( \int\left(x^{2}-3 x+4\right)^{5}(4 x-6) d x \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \left(x^{2}-3x+4\right)^{5}\left(4x-6\right) dx\)
- step1: Multiply the terms:
\(\int 2\left(x^{2}-3x+4\right)^{5}\left(2x-3\right) dx\)
- step2: Use properties of integrals:
\(2\times \int \left(x^{2}-3x+4\right)^{5}\left(2x-3\right) dx\)
- step3: Use the substitution \(dx=\frac{1}{2x-3} dt\) to transform the integral\(:\)
\(2\times \int \left(x^{2}-3x+4\right)^{5}\left(2x-3\right)\times \frac{1}{2x-3} dt\)
- step4: Simplify:
\(2\times \int \left(x^{2}-3x+4\right)^{5} dt\)
- step5: Use the substitution \(t=x^{2}-3x+4\) to transform the integral\(:\)
\(2\times \int t^{5} dt\)
- step6: Evaluate the integral:
\(2\times \frac{t^{5+1}}{5+1}\)
- step7: Simplify:
\(2\times \frac{t^{6}}{6}\)
- step8: Reduce the fraction:
\(1\times \frac{t^{6}}{3}\)
- step9: Multiply the terms:
\(\frac{t^{6}}{3}\)
- step10: Substitute back:
\(\frac{\left(x^{2}-3x+4\right)^{6}}{3}\)
- step11: Add the constant of integral C:
\(\frac{\left(x^{2}-3x+4\right)^{6}}{3} + C, C \in \mathbb{R}\)
Calculate the integral \( \int \frac{3}{1-\sin ^{2} x} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \frac{3}{1-\sin^{2}\left(x\right)} dx\)
- step1: Rewrite the expression:
\(\int 3\cos^{-2}\left(x\right) dx\)
- step2: Rewrite the expression:
\(\int \frac{3}{\cos^{2}\left(x\right)} dx\)
- step3: Rewrite the expression:
\(\int 3\times \frac{1}{\cos^{2}\left(x\right)} dx\)
- step4: Use properties of integrals:
\(3\times \int \frac{1}{\cos^{2}\left(x\right)} dx\)
- step5: Evaluate the integral:
\(3\tan\left(x\right)\)
- step6: Add the constant of integral C:
\(3\tan\left(x\right) + C, C \in \mathbb{R}\)
Calculate the integral \( \int \frac{\sin x}{\cos x} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \frac{\sin\left(x\right)}{\cos\left(x\right)} dx\)
- step1: Evaluate the integral:
\(\ln{\left(\left|\sec\left(x\right)\right|\right)}\)
- step2: Add the constant of integral C:
\(\ln{\left(\left|\sec\left(x\right)\right|\right)} + C, C \in \mathbb{R}\)
Calculate the integral \( \int \frac{2 x}{\sqrt{2-x^{2}}} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{2x}{\sqrt{2-x^{2}}} dx\)
- step1: Rewrite the expression:
\(\int 2\times \frac{x}{\sqrt{2-x^{2}}} dx\)
- step2: Use properties of integrals:
\(2\times \int \frac{x}{\sqrt{2-x^{2}}} dx\)
- step3: Rewrite the expression:
\(2\times \int \frac{x}{\left(2-x^{2}\right)^{\frac{1}{2}}} dx\)
- step4: Use the substitution \(dx=-\frac{1}{2x} dt\) to transform the integral\(:\)
\(2\times \int \frac{x}{\left(2-x^{2}\right)^{\frac{1}{2}}}\times \left(-\frac{1}{2x}\right) dt\)
- step5: Simplify:
\(2\times \int -\frac{1}{2\left(2-x^{2}\right)^{\frac{1}{2}}} dt\)
- step6: Use the substitution \(t=-x^{2}\) to transform the integral\(:\)
\(2\times \int \frac{-1}{2\left(2+t\right)^{\frac{1}{2}}} dt\)
- step7: Rewrite the expression:
\(2\times \int -\frac{1}{2}\times \frac{1}{\left(2+t\right)^{\frac{1}{2}}} dt\)
- step8: Use properties of integrals:
\(2\left(-\frac{1}{2}\right)\times \int \frac{1}{\left(2+t\right)^{\frac{1}{2}}} dt\)
- step9: Multiply the numbers:
\(-\int \frac{1}{\left(2+t\right)^{\frac{1}{2}}} dt\)
- step10: Use the substitution \(dt=1 dv\) to transform the integral\(:\)
\(-\int \frac{1}{\left(2+t\right)^{\frac{1}{2}}}\times 1 dv\)
- step11: Simplify:
\(-\int \frac{1}{\left(2+t\right)^{\frac{1}{2}}} dv\)
- step12: Use the substitution \(v=2+t\) to transform the integral\(:\)
\(-\int \frac{1}{v^{\frac{1}{2}}} dv\)
- step13: Evaluate the integral:
\(-\frac{v^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\)
- step14: Simplify:
\(-\frac{v^{\frac{1}{2}}}{\frac{1}{2}}\)
- step15: Substitute back:
\(-\frac{\left(2+t\right)^{\frac{1}{2}}}{\frac{1}{2}}\)
- step16: Substitute back:
\(-\frac{\left(2-x^{2}\right)^{\frac{1}{2}}}{\frac{1}{2}}\)
- step17: Simplify:
\(-\frac{\sqrt{2-x^{2}}}{\frac{1}{2}}\)
- step18: Add the constant of integral C:
\(-\frac{\sqrt{2-x^{2}}}{\frac{1}{2}} + C, C \in \mathbb{R}\)
Voici les solutions pour chaque intégrale demandée :
a) Pour l'intégrale \( \int\left(x^{2}-3 x+4\right)^{5}(4 x-6) d x \) :
\[
\frac{(x^{2}-3x+4)^{6}}{3} + C, \quad C \in \mathbb{R}
\]
b) Pour l'intégrale \( \int \sin ^{7} x \cos x d x \) :
\[
\frac{1}{8}\sin^{8}(x) + C, \quad C \in \mathbb{R}
\]
c) Pour l'intégrale \( \int \frac{\sin x}{\cos x} d x \) :
\[
\ln{(\left|\sec(x)\right|)} + C, \quad C \in \mathbb{R}
\]
d) Pour l'intégrale \( \int \frac{9 x^{2}-6}{x^{3}-2 x+5} d x \) :
\[
3\ln{(\left|x^{3}-2x+5\right|)} + C, \quad C \in \mathbb{R}
\]
e) Pour l'intégrale \( \int \frac{3 x}{\sqrt{x^{2}-2}} d x \) :
\[
3\sqrt{x^{2}-2} + C, \quad C \in \mathbb{R}
\]
f) Pour l'intégrale \( \int e^{2 x^{2}-4 x}(x-1) d x \) :
\[
\frac{e^{2x^{2}-4x}}{4} + C, \quad C \in \mathbb{R}
\]
g) Pour l'intégrale \( \int \frac{3}{1-\sin ^{2} x} d x \) :
\[
3\tan(x) + C, \quad C \in \mathbb{R}
\]
h) Pour l'intégrale \( \int \frac{2 x}{\sqrt{2-x^{2}}} d x \) :
\[
-\frac{\sqrt{2-x^{2}}}{\frac{1}{2}} + C, \quad C \in \mathbb{R}
\]
i) Pour l'intégrale \( \int_{-1}^{1} \frac{x}{\left(x^{2}-4\right)^{4}} d x \) :
\[
0
\]
Ces résultats montrent les primitives des intégrales demandées, avec \( C \) représentant la constante d'intégration.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution