Question
upstudy study bank question image url

Exercice 2 : Primitives "décalées", à reconnaître a) \( \int\left(x^{2}-3 x+4\right)^{5}(4 x-6) d x \) b) \( \int \sin ^{7} x \cos x d x \) c) \( \int \frac{\sin x}{\cos x} d x \) d) \( \int \frac{9 x^{2}-6}{x^{3}-2 x+5} d x \) e) \( \int \frac{3 x}{\sqrt{x^{2}-2}} d x \) f) \( \int e^{2 x^{2}-4 x}(x-1) d x \) g) \( \int \frac{3}{1-\sin ^{2} x} d x \) h) \( \int \frac{2 x}{\sqrt{2-x^{2}}} \mathrm{~d} x \) i) \( \int_{-1}^{1} \frac{x}{\left(x^{2}-4\right)^{4}} d x \)

Ask by Tran Young. in France
Mar 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Voici les primitives des intégrales demandées : a) \( \int\left(x^{2}-3 x+4\right)^{5}(4 x-6) d x = \frac{(x^{2}-3x+4)^{6}}{3} + C \) b) \( \int \sin ^{7} x \cos x d x = \frac{1}{8}\sin^{8}(x) + C \) c) \( \int \frac{\sin x}{\cos x} d x = \ln{(\left|\sec(x)\right|)} + C \) d) \( \int \frac{9 x^{2}-6}{x^{3}-2 x+5} d x = 3\ln{(\left|x^{3}-2x+5\right|)} + C \) e) \( \int \frac{3 x}{\sqrt{x^{2}-2}} d x = 3\sqrt{x^{2}-2} + C \) f) \( \int e^{2 x^{2}-4 x}(x-1) d x = \frac{e^{2x^{2}-4x}}{4} + C \) g) \( \int \frac{3}{1-\sin ^{2} x} d x = 3\tan(x) + C \) h) \( \int \frac{2 x}{\sqrt{2-x^{2}}} d x = -\sqrt{2-x^{2}} + C \) i) \( \int_{-1}^{1} \frac{x}{\left(x^{2}-4\right)^{4}} d x = 0 \) Ces primitives sont obtenues en utilisant des méthodes de substitution et d'intégration par parties.

Solution

Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int_{-1}^{1} \frac{x}{\left(x^{2}-4\right)^{4}} dx\) - step1: Evaluate the integral: \(\int \frac{x}{\left(x^{2}-4\right)^{4}} dx\) - step2: Use the substitution \(dx=\frac{1}{2x} dt\) to transform the integral\(:\) \(\int \frac{x}{\left(x^{2}-4\right)^{4}}\times \frac{1}{2x} dt\) - step3: Simplify: \(\int \frac{1}{2\left(x^{2}-4\right)^{4}} dt\) - step4: Use the substitution \(t=x^{2}\) to transform the integral\(:\) \(\int \frac{1}{2\left(t-4\right)^{4}} dt\) - step5: Rewrite the expression: \(\int \frac{1}{2}\times \frac{1}{\left(t-4\right)^{4}} dt\) - step6: Use properties of integrals: \(\frac{1}{2}\times \int \frac{1}{\left(t-4\right)^{4}} dt\) - step7: Use the substitution \(dt=1 dv\) to transform the integral\(:\) \(\frac{1}{2}\times \int \frac{1}{\left(t-4\right)^{4}}\times 1 dv\) - step8: Simplify: \(\frac{1}{2}\times \int \frac{1}{\left(t-4\right)^{4}} dv\) - step9: Use the substitution \(v=t-4\) to transform the integral\(:\) \(\frac{1}{2}\times \int \frac{1}{v^{4}} dv\) - step10: Evaluate the integral: \(\frac{1}{2}\times \frac{v^{-4+1}}{-4+1}\) - step11: Simplify: \(\frac{1}{2}\times \frac{v^{-3}}{-3}\) - step12: Rewrite the expression: \(\frac{1}{2}\left(-\frac{v^{-3}}{3}\right)\) - step13: Multiply the terms: \(-\frac{1}{2}\times \frac{v^{-3}}{3}\) - step14: Multiply the terms: \(-\frac{v^{-3}}{2\times 3}\) - step15: Multiply the terms: \(-\frac{v^{-3}}{6}\) - step16: Simplify: \(-\frac{1}{6v^{3}}\) - step17: Substitute back: \(-\frac{1}{6\left(t-4\right)^{3}}\) - step18: Substitute back: \(-\frac{1}{6\left(x^{2}-4\right)^{3}}\) - step19: Return the limits: \(\left(-\frac{1}{6\left(x^{2}-4\right)^{3}}\right)\bigg |_{-1}^{1}\) - step20: Calculate the value: \(0\) Calculate the integral \( \int \frac{9 x^{2}-6}{x^{3}-2 x+5} d x \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{9x^{2}-6}{x^{3}-2x+5} dx\) - step1: Use the substitution \(dx=\frac{1}{3x^{2}-2} dt\) to transform the integral\(:\) \(\int \frac{9x^{2}-6}{x^{3}-2x+5}\times \frac{1}{3x^{2}-2} dt\) - step2: Simplify: \(\int \frac{3}{x^{3}-2x+5} dt\) - step3: Use the substitution \(t=x^{3}-2x+5\) to transform the integral\(:\) \(\int \frac{3}{t} dt\) - step4: Rewrite the expression: \(\int 3\times \frac{1}{t} dt\) - step5: Use properties of integrals: \(3\times \int \frac{1}{t} dt\) - step6: Evaluate the integral: \(3\ln{\left(\left|t\right|\right)}\) - step7: Substitute back: \(3\ln{\left(\left|x^{3}-2x+5\right|\right)}\) - step8: Add the constant of integral C: \(3\ln{\left(\left|x^{3}-2x+5\right|\right)} + C, C \in \mathbb{R}\) Calculate the integral \( \int \sin ^{7} x \cos x d x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \sin^{7}\left(x\right)\cos\left(x\right) dx\) - step1: Evaluate the integral: \(\frac{\sin^{7+1}\left(x\right)}{7+1}\) - step2: Add the numbers: \(\frac{\sin^{8}\left(x\right)}{7+1}\) - step3: Add the numbers: \(\frac{\sin^{8}\left(x\right)}{8}\) - step4: Simplify the expression: \(\frac{1}{8}\sin^{8}\left(x\right)\) - step5: Add the constant of integral C: \(\frac{1}{8}\sin^{8}\left(x\right) + C, C \in \mathbb{R}\) Calculate the integral \( \int e^{2 x^{2}-4 x}(x-1) d x \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int e^{2x^{2}-4x}\left(x-1\right) dx\) - step1: Use the substitution \(dx=\frac{1}{4x-4} dt\) to transform the integral\(:\) \(\int e^{2x^{2}-4x}\left(x-1\right)\times \frac{1}{4x-4} dt\) - step2: Simplify: \(\int \frac{e^{2x^{2}-4x}}{4} dt\) - step3: Use the substitution \(t=2x^{2}-4x\) to transform the integral\(:\) \(\int \frac{e^{t}}{4} dt\) - step4: Rewrite the expression: \(\int \frac{1}{4}e^{t} dt\) - step5: Use properties of integrals: \(\frac{1}{4}\times \int e^{t} dt\) - step6: Evaluate the integral: \(\frac{1}{4}e^{t}\) - step7: Multiply the terms: \(\frac{e^{t}}{4}\) - step8: Substitute back: \(\frac{e^{2x^{2}-4x}}{4}\) - step9: Add the constant of integral C: \(\frac{e^{2x^{2}-4x}}{4} + C, C \in \mathbb{R}\) Calculate the integral \( \int \frac{3 x}{\sqrt{x^{2}-2}} d x \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{3x}{\sqrt{x^{2}-2}} dx\) - step1: Rewrite the expression: \(\int 3\times \frac{x}{\sqrt{x^{2}-2}} dx\) - step2: Use properties of integrals: \(3\times \int \frac{x}{\sqrt{x^{2}-2}} dx\) - step3: Rewrite the expression: \(3\times \int \frac{x}{\left(x^{2}-2\right)^{\frac{1}{2}}} dx\) - step4: Use the substitution \(dx=\frac{1}{2x} dt\) to transform the integral\(:\) \(3\times \int \frac{x}{\left(x^{2}-2\right)^{\frac{1}{2}}}\times \frac{1}{2x} dt\) - step5: Simplify: \(3\times \int \frac{1}{2\left(x^{2}-2\right)^{\frac{1}{2}}} dt\) - step6: Use the substitution \(t=x^{2}\) to transform the integral\(:\) \(3\times \int \frac{1}{2\left(t-2\right)^{\frac{1}{2}}} dt\) - step7: Rewrite the expression: \(3\times \int \frac{1}{2}\times \frac{1}{\left(t-2\right)^{\frac{1}{2}}} dt\) - step8: Use properties of integrals: \(3\times \frac{1}{2}\times \int \frac{1}{\left(t-2\right)^{\frac{1}{2}}} dt\) - step9: Multiply: \(\frac{3}{2}\times \int \frac{1}{\left(t-2\right)^{\frac{1}{2}}} dt\) - step10: Use the substitution \(dt=1 dv\) to transform the integral\(:\) \(\frac{3}{2}\times \int \frac{1}{\left(t-2\right)^{\frac{1}{2}}}\times 1 dv\) - step11: Simplify: \(\frac{3}{2}\times \int \frac{1}{\left(t-2\right)^{\frac{1}{2}}} dv\) - step12: Use the substitution \(v=t-2\) to transform the integral\(:\) \(\frac{3}{2}\times \int \frac{1}{v^{\frac{1}{2}}} dv\) - step13: Evaluate the integral: \(\frac{3}{2}\times \frac{v^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\) - step14: Simplify: \(\frac{3}{2}\times \frac{v^{\frac{1}{2}}}{\frac{1}{2}}\) - step15: Multiply the terms: \(3v^{\frac{1}{2}}\) - step16: Substitute back: \(3\left(t-2\right)^{\frac{1}{2}}\) - step17: Substitute back: \(3\left(x^{2}-2\right)^{\frac{1}{2}}\) - step18: Simplify: \(3\sqrt{x^{2}-2}\) - step19: Add the constant of integral C: \(3\sqrt{x^{2}-2} + C, C \in \mathbb{R}\) Calculate the integral \( \int\left(x^{2}-3 x+4\right)^{5}(4 x-6) d x \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \left(x^{2}-3x+4\right)^{5}\left(4x-6\right) dx\) - step1: Multiply the terms: \(\int 2\left(x^{2}-3x+4\right)^{5}\left(2x-3\right) dx\) - step2: Use properties of integrals: \(2\times \int \left(x^{2}-3x+4\right)^{5}\left(2x-3\right) dx\) - step3: Use the substitution \(dx=\frac{1}{2x-3} dt\) to transform the integral\(:\) \(2\times \int \left(x^{2}-3x+4\right)^{5}\left(2x-3\right)\times \frac{1}{2x-3} dt\) - step4: Simplify: \(2\times \int \left(x^{2}-3x+4\right)^{5} dt\) - step5: Use the substitution \(t=x^{2}-3x+4\) to transform the integral\(:\) \(2\times \int t^{5} dt\) - step6: Evaluate the integral: \(2\times \frac{t^{5+1}}{5+1}\) - step7: Simplify: \(2\times \frac{t^{6}}{6}\) - step8: Reduce the fraction: \(1\times \frac{t^{6}}{3}\) - step9: Multiply the terms: \(\frac{t^{6}}{3}\) - step10: Substitute back: \(\frac{\left(x^{2}-3x+4\right)^{6}}{3}\) - step11: Add the constant of integral C: \(\frac{\left(x^{2}-3x+4\right)^{6}}{3} + C, C \in \mathbb{R}\) Calculate the integral \( \int \frac{3}{1-\sin ^{2} x} d x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{3}{1-\sin^{2}\left(x\right)} dx\) - step1: Rewrite the expression: \(\int 3\cos^{-2}\left(x\right) dx\) - step2: Rewrite the expression: \(\int \frac{3}{\cos^{2}\left(x\right)} dx\) - step3: Rewrite the expression: \(\int 3\times \frac{1}{\cos^{2}\left(x\right)} dx\) - step4: Use properties of integrals: \(3\times \int \frac{1}{\cos^{2}\left(x\right)} dx\) - step5: Evaluate the integral: \(3\tan\left(x\right)\) - step6: Add the constant of integral C: \(3\tan\left(x\right) + C, C \in \mathbb{R}\) Calculate the integral \( \int \frac{\sin x}{\cos x} d x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{\sin\left(x\right)}{\cos\left(x\right)} dx\) - step1: Evaluate the integral: \(\ln{\left(\left|\sec\left(x\right)\right|\right)}\) - step2: Add the constant of integral C: \(\ln{\left(\left|\sec\left(x\right)\right|\right)} + C, C \in \mathbb{R}\) Calculate the integral \( \int \frac{2 x}{\sqrt{2-x^{2}}} d x \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{2x}{\sqrt{2-x^{2}}} dx\) - step1: Rewrite the expression: \(\int 2\times \frac{x}{\sqrt{2-x^{2}}} dx\) - step2: Use properties of integrals: \(2\times \int \frac{x}{\sqrt{2-x^{2}}} dx\) - step3: Rewrite the expression: \(2\times \int \frac{x}{\left(2-x^{2}\right)^{\frac{1}{2}}} dx\) - step4: Use the substitution \(dx=-\frac{1}{2x} dt\) to transform the integral\(:\) \(2\times \int \frac{x}{\left(2-x^{2}\right)^{\frac{1}{2}}}\times \left(-\frac{1}{2x}\right) dt\) - step5: Simplify: \(2\times \int -\frac{1}{2\left(2-x^{2}\right)^{\frac{1}{2}}} dt\) - step6: Use the substitution \(t=-x^{2}\) to transform the integral\(:\) \(2\times \int \frac{-1}{2\left(2+t\right)^{\frac{1}{2}}} dt\) - step7: Rewrite the expression: \(2\times \int -\frac{1}{2}\times \frac{1}{\left(2+t\right)^{\frac{1}{2}}} dt\) - step8: Use properties of integrals: \(2\left(-\frac{1}{2}\right)\times \int \frac{1}{\left(2+t\right)^{\frac{1}{2}}} dt\) - step9: Multiply the numbers: \(-\int \frac{1}{\left(2+t\right)^{\frac{1}{2}}} dt\) - step10: Use the substitution \(dt=1 dv\) to transform the integral\(:\) \(-\int \frac{1}{\left(2+t\right)^{\frac{1}{2}}}\times 1 dv\) - step11: Simplify: \(-\int \frac{1}{\left(2+t\right)^{\frac{1}{2}}} dv\) - step12: Use the substitution \(v=2+t\) to transform the integral\(:\) \(-\int \frac{1}{v^{\frac{1}{2}}} dv\) - step13: Evaluate the integral: \(-\frac{v^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\) - step14: Simplify: \(-\frac{v^{\frac{1}{2}}}{\frac{1}{2}}\) - step15: Substitute back: \(-\frac{\left(2+t\right)^{\frac{1}{2}}}{\frac{1}{2}}\) - step16: Substitute back: \(-\frac{\left(2-x^{2}\right)^{\frac{1}{2}}}{\frac{1}{2}}\) - step17: Simplify: \(-\frac{\sqrt{2-x^{2}}}{\frac{1}{2}}\) - step18: Add the constant of integral C: \(-\frac{\sqrt{2-x^{2}}}{\frac{1}{2}} + C, C \in \mathbb{R}\) Voici les solutions pour chaque intégrale demandée : a) Pour l'intégrale \( \int\left(x^{2}-3 x+4\right)^{5}(4 x-6) d x \) : \[ \frac{(x^{2}-3x+4)^{6}}{3} + C, \quad C \in \mathbb{R} \] b) Pour l'intégrale \( \int \sin ^{7} x \cos x d x \) : \[ \frac{1}{8}\sin^{8}(x) + C, \quad C \in \mathbb{R} \] c) Pour l'intégrale \( \int \frac{\sin x}{\cos x} d x \) : \[ \ln{(\left|\sec(x)\right|)} + C, \quad C \in \mathbb{R} \] d) Pour l'intégrale \( \int \frac{9 x^{2}-6}{x^{3}-2 x+5} d x \) : \[ 3\ln{(\left|x^{3}-2x+5\right|)} + C, \quad C \in \mathbb{R} \] e) Pour l'intégrale \( \int \frac{3 x}{\sqrt{x^{2}-2}} d x \) : \[ 3\sqrt{x^{2}-2} + C, \quad C \in \mathbb{R} \] f) Pour l'intégrale \( \int e^{2 x^{2}-4 x}(x-1) d x \) : \[ \frac{e^{2x^{2}-4x}}{4} + C, \quad C \in \mathbb{R} \] g) Pour l'intégrale \( \int \frac{3}{1-\sin ^{2} x} d x \) : \[ 3\tan(x) + C, \quad C \in \mathbb{R} \] h) Pour l'intégrale \( \int \frac{2 x}{\sqrt{2-x^{2}}} d x \) : \[ -\frac{\sqrt{2-x^{2}}}{\frac{1}{2}} + C, \quad C \in \mathbb{R} \] i) Pour l'intégrale \( \int_{-1}^{1} \frac{x}{\left(x^{2}-4\right)^{4}} d x \) : \[ 0 \] Ces résultats montrent les primitives des intégrales demandées, avec \( C \) représentant la constante d'intégration.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Voici quelques éléments pour vous aider à reconnaître ces primitives "décalées" ! Pour l'intégrale \( \int\left(x^{2}-3 x+4\right)^{5}(4 x-6) d x \), notez qu'elle peut être résolue par la substitution \( u = (x^2 - 3x + 4) \). En calculant la dérivée de \( u \), vous verrez qu'elle correspond au facteur \( (4x - 6) \). Cela transforme l'intégrale en une forme plus simple à gérer. Concernant \( \int \sin^{7} x \cos x d x \), une approche efficace consiste à poser \( u = \sin x \). En remplaçant \( \cos x \, dx \) par \( du \), l'intégrale se simplifie considérablement, permettant de casi-tout transformer en termes de \( u \). Cette méthode est souvent utilisée pour les intégrales contenant des puissances de sinus et cosinus.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy