Question
upstudy study bank question image url

Use the long division method to find the result when \( 6 x^{3}-11 x^{2}-27 x+10 \) is divided \( 3 x-1 \).

Ask by Barnett Lewis. in the United States
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The result of dividing \( 6x^{3} - 11x^{2} - 27x + 10 \) by \( 3x - 1 \) is \( 2x^{2} - 3x - 10 \) with no remainder.

Solution

To divide \( 6x^{3} - 11x^{2} - 27x + 10 \) by \( 3x - 1 \) using the long division method, follow these steps: ### Step 1: Setup the Division \[ \begin{array}{r|llll} 3x - 1 & 6x^{3} & -11x^{2} & -27x & +10 \\ \end{array} \] ### Step 2: Divide the Leading Terms - **Divide:** \( 6x^{3} \div 3x = 2x^{2} \) - **Write:** \( 2x^{2} \) above the division line. \[ \begin{array}{r|llll} & 2x^{2} & & & \\ \hline 3x - 1 & 6x^{3} & -11x^{2} & -27x & +10 \\ \end{array} \] ### Step 3: Multiply and Subtract - **Multiply:** \( 2x^{2} \times (3x - 1) = 6x^{3} - 2x^{2} \) - **Subtract:** \[ \begin{align*} (6x^{3} - 11x^{2}) - (6x^{3} - 2x^{2}) &= -9x^{2} \end{align*} \] - Bring down the next term: \( -27x \). \[ \begin{array}{r|llll} & 2x^{2} & & & \\ \hline 3x - 1 & 6x^{3} & -11x^{2} & -27x & +10 \\ & -(6x^{3} - 2x^{2}) & & & \\ \hline & & -9x^{2} & -27x & \\ \end{array} \] ### Step 4: Repeat the Process - **Divide:** \( -9x^{2} \div 3x = -3x \) - **Write:** \( -3x \) above the division line. \[ \begin{array}{r|llll} & 2x^{2} & -3x & & \\ \hline 3x - 1 & 6x^{3} & -11x^{2} & -27x & +10 \\ & -(6x^{3} - 2x^{2}) & & & \\ \hline & & -9x^{2} & -27x & \\ & & -(-9x^{2} + 3x) & & \\ \hline & & & -30x & \\ \end{array} \] - **Multiply:** \( -3x \times (3x - 1) = -9x^{2} + 3x \) - **Subtract:** \[ \begin{align*} (-9x^{2} - 27x) - (-9x^{2} + 3x) &= -30x \end{align*} \] - Bring down the next term: \( +10 \). ### Step 5: Final Division - **Divide:** \( -30x \div 3x = -10 \) - **Write:** \( -10 \) above the division line. \[ \begin{array}{r|llll} & 2x^{2} & -3x & -10 & \\ \hline 3x - 1 & 6x^{3} & -11x^{2} & -27x & +10 \\ & -(6x^{3} - 2x^{2}) & & & \\ \hline & & -9x^{2} & -27x & \\ & & -(-9x^{2} + 3x) & & \\ \hline & & & -30x & +10 \\ & & & -(-30x + 10) & \\ \hline & & & & 0 \\ \end{array} \] - **Multiply:** \( -10 \times (3x - 1) = -30x + 10 \) - **Subtract:** \[ \begin{align*} (-30x + 10) - (-30x + 10) &= 0 \end{align*} \] ### Conclusion The division results in: \[ \boxed{2x^{2} - 3x - 10} \] There is **no remainder**.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To divide \( 6x^3 - 11x^2 - 27x + 10 \) by \( 3x - 1 \) using long division, follow these steps: 1. **Divide the Leading Terms**: Divide the leading term of the dividend \( 6x^3 \) by the leading term of the divisor \( 3x \): \[ \frac{6x^3}{3x} = 2x^2 \] 2. **Multiply and Subtract**: Multiply \( 2x^2 \) by the entire divisor \( 3x - 1 \): \[ 2x^2(3x - 1) = 6x^3 - 2x^2 \] Now subtract this from the original polynomial: \[ (6x^3 - 11x^2) - (6x^3 - 2x^2) = -11x^2 + 2x^2 = -9x^2 \] Now bring down the next term \( -27x \) to get \( -9x^2 - 27x \). 3. **Divide Again**: Now divide \( -9x^2 \) by \( 3x \): \[ \frac{-9x^2}{3x} = -3x \] 4. **Multiply and Subtract**: Multiply \( -3x \) by \( 3x - 1 \): \[ -3x(3x - 1) = -9x^2 + 3x \] Subtract this from \( -9x^2 - 27x \): \[ (-9x^2 - 27x) - (-9x^2 + 3x) = -27x - 3x = -30x \] Bring down the \( +10 \) to get \( -30x + 10 \). 5. **Divide Again**: Now divide \( -30x \) by \( 3x \): \[ \frac{-30x}{3x} = -10 \] 6. **Multiply and Subtract**: Multiply \( -10 \) by \( 3x - 1 \): \[ -10(3x - 1) = -30x + 10 \] Subtract this from \( -30x + 10 \): \[ (-30x + 10) - (-30x + 10) = 0 \] The result of the long division is: \[ 2x^2 - 3x - 10 \] Since the remainder is \( 0 \), the division is exact. Thus, we have: \[ \frac{6x^3 - 11x^2 - 27x + 10}{3x - 1} = 2x^2 - 3x - 10 \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy