Question
upstudy study bank question image url

\( 7 ^ { \lg x } - 5 ^ { \lg x + 1 } = 3 \cdot 5 ^ { \lg x - 1 } - 13 \cdot 7 ^ { \lg x - 1 } \)

Ask by Huang Ross. in Russia
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( x = 100 \)

Solution

Рассмотрим уравнение:   7^(lg x) – 5^(lg x + 1) = 3·5^(lg x – 1) – 13·7^(lg x – 1). Обозначим A = 7^(lg x) и B = 5^(lg x). Заметим, что:   5^(lg x + 1) = 5·5^(lg x) = 5B,   5^(lg x – 1) = (1/5)·5^(lg x) = B/5,   7^(lg x – 1) = (1/7)·7^(lg x) = A/7. Подставим эти обозначения в уравнение:   A – 5B = 3·(B/5) – 13·(A/7). Чтобы избавиться от дробей, домножим обе части уравнения на 35 (НОК знаменателей 5 и 7):   35·(A – 5B) = 35·[3·(B/5) – 13·(A/7)]. Выполним умножение:   35A – 175B = 7·3B – 5·13A,   35A – 175B = 21B – 65A. Перенесём подобные слагаемые в одну часть:   35A + 65A = 175B + 21B,   100A = 196B. Отсюда получаем:   A = (196/100)B = (49/25)B. Напомним, что A = 7^(lg x) и B = 5^(lg x), тогда:   7^(lg x) = (49/25)·5^(lg x). Поделим обе части уравнения на 5^(lg x):   (7^(lg x))/(5^(lg x)) = 49/25,   (7/5)^(lg x) = 49/25. Заметим, что 49/25 = (7²)/(5²) = (7/5)². Таким образом, уравнение принимает вид:   (7/5)^(lg x) = (7/5)². Так как основание (7/5) > 0 и ≠ 1, можно приравнять показатели степеней:   lg x = 2. Отсюда:   x = 10² = 100. Ответ: x = 100.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To help you understand the equation better, let's transform it using the properties of logarithms and exponents! Notice that \( a^{\lg b} = b^{\lg a} \). So, you can rewrite \( 7^{\lg x} \) as \( x^{\lg 7} \) and \( 5^{\lg x} \) as \( x^{\lg 5} \). Then, simplify the equation step by step—this often helps in revealing clearer relationships between the variables! Next up, solving such equations can be tricky, so watch out for common mistakes like misapplying the properties of logarithms or forgetting to handle negative signs properly. Always double-check each transformation! It's also helpful to isolate terms and simplify them gradually. After you get used to it, you might find it easier to spot patterns or factor terms, leading to a solution faster!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy