Pre-calculus Questions from Dec 08,2024

Browse the Pre-calculus Q&A Archive for Dec 08,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Use Descartes's Rule of Signs to determine the possible numbers of positive and negative real zeros of \( f(x)=6 x^{4}-2 x^{3}-x^{2}-4 x+3 \). What is the possible number of positive real zeros? 2,0 (Use a comma to separate answers as needed.) What is the possible number of negative real zeros? (Use a comma to separate answers as needed.) Use Descartes's Rule of Signs to determine the possible numbers of positive and negative real zeros of \( f(x)=6 x^{4}-2 x^{3}-x^{2}-4 x+3 \) What is the possible number of positive real zeros? use a comma to separate answers as needed.) Use Descartes's Rule of Signs to determine the possible numbers of positive and negative real zeros of \( f(x)=6 x^{4}-2 x^{3}-x^{2}-4 x+3 \) What is the possible number of positive real zeros? \( \square \) (Use a comma to separate answers as needed.) \( \square \) For the function \( y=2 \log (x) \), what kind of transformation is applied? \( \square \) What is the vertical asymptote of the function \( y=\log (x+5) \) ? 7. Let \( f(x)=\frac{1}{x-1} \) and \( g(x)=\frac{2 x}{x+2} \). Find and simplify: (a) \( (f+g)(2) \) (b) \( \left(\frac{g}{f}\right)(x) \) (d) \( (f \circ g)(x) \) (c) \( (g \circ f)(2) \) Where is the function, \( h(x)=\frac{2 x-1}{x+7} \), discontinuous? \( \begin{array}{l}0.5 \\ -7 \\ -2\end{array} \) 7. The formula for the volume of a sphere is \( f(r)=\frac{4}{3} \pi r^{3} \). Determine each value. Express to the nearest tenth, if necessary. \( \begin{array}{ll}\text { a) } f(3) & \text { b) } f(10) \\ \text { c) } f\left(\frac{d}{2}\right) & \text { d) } r \text { if } f(r)=6.28\end{array} \) 5. Sin graficar, determina el dominio, recorrido \( y \) las intersecciones con los cjes de las graficas correspondientes a las siguientes funciones exponenciales. a. \( f(x)=2^{x}-1 \) b. \( h(x)=1-3^{x} \) \( h(x)=5^{x}-2 \) c. First find \( f+g, f-g, f g \), and \( \frac{f}{g} \). Then determine the domain for each function. \( f(x)=\sqrt{x+4}, g(x)=\sqrt{x-5} \) \[ \] \( (f+g)(x)=\sqrt{x+4}+\sqrt{x-5} \) What is the domain of \( f+g \) ? \( [5, \infty) \) \( (-\infty, \infty) \) \( [-4, \infty) \) ( \( f-g)(x)=\square \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy