Pre-calculus Questions from Dec 10,2024

Browse the Pre-calculus Q&A Archive for Dec 10,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
3) Disegnare il grafico di una funzione \( f(x) \) che soddisfi le seguenti cundizionit - Dominio R - \( \lim _{x \rightarrow-\infty} f(x)=-2 \) - \( f(0)=5 \) - \( \lim _{x \rightarrow+\infty} f(x)=0 \) 1) Realicen el gráfico aproximado de las siguientes funciones: a) \( f(x)=x^{3}+x^{2}-x-2 \) What is the domain and range of the logarithmic function \( y = \log(x) \)? Domain of the function \( R(x)=\log x \) \( x \) 1. The graph of \( y=-3 x^{2} \) shifted 2 units above the origin. 5. Let \( x_{1}=1 \) and \( x_{n+1}=3 x_{n}-1 \) for all \( n \in \mathbb{N} \). Among the following statements, the correct one is \( \begin{array}{lll}\text { (A) }\left(x_{n}\right) \text { converges to } 3 & \text { (B) }\left(x_{n}\right) \text { converges to } 1 / 2 & \text { (C) }\left(x_{n}\right) \text { is unbounded. } \\ \text { (D) }\left(x_{n}\right) \text { is decreasing. } & \text { (E) } x_{n} \leq 10 \text { for all } n \in \mathbb{N}\end{array} \) 4. Given \( \epsilon>0 \), the statement \( x \in(1-\epsilon, 1+\epsilon) \) is equivalent to \( \begin{array}{llll}\text { (A) } x-1>-\epsilon & \text { (B) } x-1<\epsilon & \text { (C) }|x-1|>\epsilon & \text { (D) }|x-1| \leq \epsilon\end{array} \) 3. Among the following sequences, the bounded one is \( \begin{array}{llll}\text { (A) }(n) & \text { (B) }\left(\frac{n^{2}}{1+n}\right) & \text { (C) }\left(\frac{(-1)^{n} n}{1+n}\right) & \text { (D) }(-1,0,-2,0,-3,0, \ldots)\end{array} \) 2. The smallest natural number \( N \) for which \( \left|\frac{2 n+3}{n}-2\right|<\frac{1}{2} \) for all \( n \geq N \) is \( \begin{array}{llll}\text { (A) } 5 & \text { (B) } 6 & \text { (C) } 7 & \text { (D) } 8\end{array} \) Let \( h(x)=\frac{1}{4 x+1} \) and \( g(x)=\frac{1}{x} \), find \( g(h(x)) \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy