Pre-calculus Questions from Jan 03,2025

Browse the Pre-calculus Q&A Archive for Jan 03,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
3. Realiza la gráfica de una función \( f \) cuyo dominio sè todo el conjunto de los números reales y que satisfa ga las siguientes condiciones en cada caso: - fes una función par. - fes creciente en \( [0,2] \) y decreciente en \( (2,8) \). - \( f(2)=3 \). Eéterminer \( g \) et \( h \) lorsqué 5 : Soit la fonction paire \( f \) définie sur \( [-3 ; 3] \) telle que pour tout réel \( x \) de l'intervalle \( [0 ; 3] \) on ait \( f(x)=x+1 \) 1) Définir \( f \) pour \( x \in[-3 ; 0[ \) 2) Tracer la courbe représentative de la fonction \( f \). 3) Peut-on répondre aux mémes questions sif \( f \) est impaire? 3.3 The following sequence forms a convergent geometric sequence: \( \frac{3}{(x-1)^{2}}+\frac{1}{(x-1)}+\frac{1}{3}+\frac{(x-1)}{9}+\ldots \) 3.3.1 Determine the possible values of x . QUESTION 3 The equation of a hyperbola is given by \( f(x)=\frac{3}{x-7}-4 \). Write down the equation of the new function that is formed when \( f \) is transformed as follows: \( 3.1 \quad \) Shift two units to the left \( 3.2 \quad \) Shift 3 units up \( 3.3 \quad \) Shift 1 unit right and 2 units down \( 3.4 \quad \) The equation of the new hyperbola has new asymptotes at \( x=-4 \) and \( y=-1 \) QUESTION 4 Sketch on the same set of axes the graphs of \( f(x)=-2 x^{2}-4 x+6 \) and \( g(x)=-2 \cdot 2^{x-1}+1 \). Clearly indicate all intercepts with the axes, turning point(s) and asymptote(s). Solve the equation to four decimal places. \( e^{x}=3.329 \) The solution is \( x \approx \square \). (Round to four decimal places.) Question 3 of 10 This quiz: 100 point(s) possible This question: 10 point(s) possible Describe verbally the transformations that can be used to obtain the graph of g from the graph of f \[ g(x)=7^{x-6} \cdot f(x)=T^{x} \] Exercice 3 : Pour chacune des fonctions numériques définies ci-dessous, préciser l'ensemble de définition suivant les valeurs du paramètre réel m. \( f(x)=\frac{3}{|x|+m} ; f(x)=\sqrt{x^{2}+m} ; f(x)=\frac{x^{2}-16}{x^{2}-m x+1} ; f(x)=\sqrt{x^{2}-m x+1} \) (a) Without using a calculator, determine positive integers \( m \) and \( n \) for which \[ \sin ^{6} 1^{\circ}+\sin ^{6} 2^{\circ}+\sin ^{6} 3^{\circ}+\cdots+\sin ^{6} 87^{\circ}+\sin ^{6} 88^{\circ}+\sin ^{6} 89^{\circ}=\frac{m}{n} \] (The sum on the left side of the equation consists of 89 terms of the form \( \sin ^{6} x^{\circ} \), where \( x \) takes each positive integer value from 1 to 89 .) (b) Let \( f(n) \) be the number of positive integers that have exactly \( n \) digits and whose digits have a sum of 5 . Determine, with proof, how many of the 2014 integers \( f(1), f(2), \ldots, f(2014) \) have a units digit of 1 . If \( f(x)=\frac{\sqrt{x+2}}{3-3 x^{2}} \), for which values of \( x \) is 1.2.2 \( \quad f(x) \) non real.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy