Ryan Salinas
07/31/2024 · escuela secundaria

1. Diberikan \( H \) subgroup dari grup \( G \) dan \( x, y \in G \). Buktikan bahwa \[ H x=H y \text { jika dan hanya jika } x y^{-1} \in H \] 2. Diberikan \( H \) subgroup dari grup G dan \( \mathrm{x}, y \in G \) maka \( x H=y H \) atau \( x H \cap y H=\emptyset \). Buktikan! 3. Diberikan \( H \) subgroup dari grup \( G \) maka himpunan semua koset kiri yaitu \( \{x H \mid x \in G\} \) membentuk partisi pada G . Buktikan! 4. Diberikan \( H \) subgroup dari grup G dan \( x \in G \), maka order dari \( H \) sama dengan order dari \( x H \) dan sama dengan order dari \( H x \) yaitu: \[ |H|=|x H|=|H x| \]

Solución ThothAI de Upstudy

Respuesta verificada por el tutor

Respuesta rápida

1. \( H x=H y \text { jika dan hanya jika } x y^{-1} \in H \) 2. \( x H=y H \) atau \( x H \cap y H=\emptyset \) 3. \( \{x H \mid x \in G\} \) membentuk partisi pada \( G \) 4. \( |H|=|x H|=|H x| \)

Solución paso a paso

Respondido por UpStudy AI y revisado por un tutor profesional
Estudio de ThothAI
Autodesarrollado y en constante mejora
El producto Thoth AI se actualiza y optimiza constantemente.
Cubre todos los temas principales
Capaz de manejar tareas de matemáticas, química, biología, física y más.
Instantáneo y preciso
Proporciona soluciones y orientación inmediatas y precisas.
Probar ahora
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto

Introduce tu pregunta aquí…

Por imagen
Volver a cargar
Archivos subidos
xxxx.png0%
Enviar
📸 EL ESTUDIO PUEDE SER UNA VERDADERA LUCHA
Por qué no UpStudy It?
Seleccione su plan a continuación
Prima

Puedes disfrutar

  • Paso a paso explicaciones
  • Experto 24/7 tutores en vivo
  • Ilimitado número de preguntas
  • Sin interrupciones
  • Acceso completo para responder y
    solución
  • Acceso completo para chat en PDF, chat en UpStudy, chat de navegación
Básico
  • Limitado Soluciones