Q:
A bacterial colony with an initial population of 50 doubles every 5 h . Which of the
following equations models the exhential growth for time, \( t \), in hours?
\( A=50(2)^{\frac{t}{5}} \)
B) \( A=50\left(\frac{1}{2}\right)^{\frac{t}{5}} \)
C) \( A=50(2)^{\frac{5}{2}} \)
D) \( A=50\left(\frac{1}{2}\right)^{\frac{5}{2}} \)
(D)
Q:
Evaluate.
\[ \frac{-1-(-3)^{2}}{(-2+3)^{2}} \]
Q:
\[ \frac{\sqrt{2}}{\sqrt{3}} \]
¿Qué procedimiento hace que la fracción se transforme en una equivalente sin races en
el denominador?
A) Sumar \( \sqrt{2} \)
B) Sumar \( \sqrt{3} \)
C) Amplificar la fracción por \( \sqrt{2} \)
D) Amplificar la fracción por \( \sqrt{3} \)
Q:
An antique automobile was found to double in value every 10 years. If the current
value is \( \$ 100000 \), what was the value of the vehicle 20 years ago?
\( \$ 25,000 \)
\( \$ 12,500 \)
\( \$ 5,000 \)
\( \$ 50,000 \)
Q:
\[ \sqrt{75}-\sqrt{48}= \]
A) 13,5
B) \( \sqrt{3} \)
C) \( \sqrt{27} \)
D) \( 3 \sqrt{3} \)
Observa la fraccion:
Q:
b. \( 2 \cdot(15-2)-[11-(7-3)]= \)
Q:
3) Evaluate the logarithmic functions
a)
\[ \begin{array}{l}\log _{2}(64) \\ \log _{9}\left(\frac{1}{27}\right) \\ \ln (\sqrt[5]{e})\end{array} \]
Q:
1) Expand out the logarithmic expressions as much as possible.
a) \( \ln \left(3 x^{5}\right) \)
b)
\( \ln \left(x y^{6}\right) \)
Q:
You go to the doctor and he gives you 16 milligrams of radioactive dye. After 12 minutes, 5 milligrams of
dye remain in your system. To leave the doctor's office, you must pass through a radiation detector without
sounding the alarm.
If the detector will sound the alarm if more than 2 milligrams of the dye are in your system, how long will
your visit to the doctor take, assuming you were given the dye as soon as you arrived?
Give your answer to the nearest minute.
You will spend
Q:
\( 0.2 \overline{6} \) as a fraction?
Pon a prueba tus conocimientos sobre Preálgebra!
Seleccione la respuesta correcta y verifique su respuesta
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar