Question
upstudy study bank question image url

Tentukan himpunan penyelesaian dari persamaan \( { }^{2} \log \left(x^{2}-1\right)=3 \). A. \( \{-1,3\} \) B. \( \{-1,1\} \) C. \( \{-3,1\} \) D. \( \{-3,3\} \) E. \( \{-3,4\} \)

Ask by Davey Vega. in Indonesia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solution set is { -3, 3 }, so the correct answer is D.

Solution

We are given the equation log₂(x² - 1) = 3. Step 1: Convert the equation from logarithmic to exponential form:   x² - 1 = 2³ = 8 Step 2: Solve for x:   x² = 8 + 1 = 9   x = ±3 Step 3: Check the domain: For the logarithm log₂(x² - 1) to be defined, its argument must be positive, i.e.,   x² - 1 > 0   x² > 1 This gives: x < -1 or x > 1. Both x = -3 and x = 3 satisfy this condition. Thus, the solution set is { -3, 3 }. The correct answer is D.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Mari kita selesaikan persamaan \( { }^{2} \log \left(x^{2}-1\right)=3 \). Pertama, kita dapat mengekspresikan persamaan ini dalam bentuk eksponensial. \[ 2 \log \left(x^{2}-1\right) = 3 \implies \log \left(x^{2}-1\right) = \frac{3}{2} \] Kemudian kita mengambil eksponen dari kedua sisi: \[ x^{2}-1 = 10^{\frac{3}{2}} = 10\sqrt{10} \] Selanjutnya, kita dapat menyelesaikan untuk \( x^{2} \): \[ x^{2} = 10\sqrt{10} + 1 \] Setelah itu, kita ambil akar kuadrat untuk menemukan nilai \( x \): \[ x = \pm \sqrt{10\sqrt{10} + 1} \] Namun, kita perlu memastikan bahwa \( x^{2} - 1 > 0 \), sehingga \( x^{2} > 1 \). Oleh karena itu, solusi \( x \) yang memenuhi kondisi ini akan menghasilkan nilai nyata. Maka solusi akhir kita adalah \( x = -1 \) dan \( x = 3 \). Dari pilihan yang diberikan, pilihan yang tepat adalah: A. \( \{-1,3\} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy