Question
Simplify: \( \frac{12 s^{3}+9 s^{2}+12 s-24}{-3} \)
Ask by Guerrero Carter. in the United States
Feb 21,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
The simplified form is \( -4s^{3}-3s^{2}-4s+8 \).
Solution
Calculate or simplify the expression \( (12*s^3+9*s^2+12*s-24)/(-3) \).
Divide by following steps:
- step0: Divide the numbers:
\(\frac{\left(12s^{3}+9s^{2}+12s-24\right)}{\left(-3\right)}\)
- step1: Calculate:
\(\frac{12s^{3}+9s^{2}+12s-24}{\left(-3\right)}\)
- step2: Calculate:
\(\frac{12s^{3}+9s^{2}+12s-24}{-3}\)
- step3: Calculate:
\(-4s^{3}-3s^{2}-4s+8\)
The simplified form of the expression \( \frac{12s^{3}+9s^{2}+12s-24}{-3} \) is \( -4s^{3}-3s^{2}-4s+8 \).
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Beyond the Answer
To simplify the expression \( \frac{12 s^{3}+9 s^{2}+12 s-24}{-3} \), we can divide each term in the numerator by \(-3\): \[ = \frac{12 s^{3}}{-3} + \frac{9 s^{2}}{-3} + \frac{12 s}{-3} + \frac{-24}{-3} \] Calculating each term gives us: \[ = -4 s^{3} - 3 s^{2} - 4 s + 8 \] Therefore, the simplified expression is: \[ -4 s^{3} - 3 s^{2} - 4 s + 8 \]