Question
upstudy study bank question image url

Question 7 Let \( f(x)=2 x+1, g(x)=-x^{2}+1 \), and \( h(x)=\frac{1}{x+1} \). The function \( t \) is defined as \( f(x)=\left\{\begin{array}{ll}h(x) & \text { if } x \in(2,6] \\ g(x) & \text { if } x \leq 1\end{array}\right. \) The domain of function \( t \) is: (A) \( \mathrm{Dt}=(-\infty, 1] \cup(2,6) \) (B) \( \mathrm{Dt}=(-\infty, 6] \) (C) None of these (D) \( \mathrm{Dt}=(-\infty, 1) \cup[, 6] \) (E) \( \mathrm{Dt}=(-\infty, 1] \cup[2,6] \)

Ask by Clark Malone. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The domain of function \( t \) is \( (-\infty, 1] \cup (2, 6] \).

Solution

To determine the domain of the function \( t \), we need to analyze the conditions under which \( t \) is defined based on the piecewise definition provided. The function \( t \) is defined as follows: \[ t(x) = \begin{cases} h(x) & \text{if } x \in (2, 6] \\ g(x) & \text{if } x \leq 1 \end{cases} \] ### Step 1: Analyze the conditions for \( h(x) \) The function \( h(x) = \frac{1}{x+1} \) is defined for all \( x \) except where the denominator is zero. This occurs when: \[ x + 1 = 0 \implies x = -1 \] Thus, \( h(x) \) is defined for \( x \in (-\infty, -1) \cup (-1, \infty) \). Since \( t(x) = h(x) \) for \( x \in (2, 6] \), we need to check if \( -1 \) falls within this interval. It does not, so \( h(x) \) is valid for all \( x \) in \( (2, 6] \). ### Step 2: Analyze the conditions for \( g(x) \) The function \( g(x) = -x^2 + 1 \) is a polynomial and is defined for all real numbers. Therefore, \( g(x) \) is valid for \( x \leq 1 \). ### Step 3: Combine the intervals Now we combine the intervals where \( t(x) \) is defined: 1. From \( g(x) \): \( x \leq 1 \) gives us the interval \( (-\infty, 1] \). 2. From \( h(x) \): \( x \in (2, 6] \) gives us the interval \( (2, 6] \). ### Step 4: Determine the overall domain The overall domain of \( t \) is the union of the two intervals: \[ \text{Domain of } t = (-\infty, 1] \cup (2, 6] \] ### Conclusion Now, we can match this result with the provided options: (A) \( \mathrm{Dt}=(-\infty, 1] \cup(2,6) \) (B) \( \mathrm{Dt}=(-\infty, 6] \) (C) None of these (D) \( \mathrm{Dt}=(-\infty, 1) \cup[, 6] \) (E) \( \mathrm{Dt}=(-\infty, 1] \cup[2,6] \) The correct answer is: **(A) \( \mathrm{Dt}=(-\infty, 1] \cup(2,6) \)**.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To determine the domain of the function \( t \), we need to analyze each piece of the piecewise definition. For \( h(x) \), the function is defined for \( x \in (2, 6] \), while for \( g(x) \), the function is defined for \( x \leq 1 \). Therefore, combining these intervals, we can conclude that the domain of \( t \) is \( (-\infty, 1] \cup (2, 6] \). Now, let's verify the options. Option (A) \( \mathrm{Dt}=(-\infty, 1] \cup(2,6) \) perfectly matches our findings. So the answer is: **(A)** \( \mathrm{Dt}=(-\infty, 1] \cup(2, 6) \) If you have any questions about understanding piecewise functions or their domains, consider looking into graphical interpretations, as visualizing these functions can make identifying domains much easier! Also, check out some workbooks or online resources full of engaging problems that can help hone your skills in function analysis—you'll be amazed at how much fun math can be!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy