Pregunta
upstudy study bank question image url

Question 7 Let \( f(x)=2 x+1, g(x)=-x^{2}+1 \), and \( h(x)=\frac{1}{x+1} \). The function \( t \) is defined as \( f(x)=\left\{\begin{array}{ll}h(x) & \text { if } x \in(2,6] \\ g(x) & \text { if } x \leq 1\end{array}\right. \) The domain of function \( t \) is: (A) \( \mathrm{Dt}=(-\infty, 1] \cup(2,6) \) (B) \( \mathrm{Dt}=(-\infty, 6] \) (C) None of these (D) \( \mathrm{Dt}=(-\infty, 1) \cup[, 6] \) (E) \( \mathrm{Dt}=(-\infty, 1] \cup[2,6] \)

Ask by Clark Malone. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The domain of function \( t \) is \( (-\infty, 1] \cup (2, 6] \).

Solución

To determine the domain of the function \( t \), we need to analyze the conditions under which \( t \) is defined based on the piecewise definition provided. The function \( t \) is defined as follows: \[ t(x) = \begin{cases} h(x) & \text{if } x \in (2, 6] \\ g(x) & \text{if } x \leq 1 \end{cases} \] ### Step 1: Analyze the conditions for \( h(x) \) The function \( h(x) = \frac{1}{x+1} \) is defined for all \( x \) except where the denominator is zero. This occurs when: \[ x + 1 = 0 \implies x = -1 \] Thus, \( h(x) \) is defined for \( x \in (-\infty, -1) \cup (-1, \infty) \). Since \( t(x) = h(x) \) for \( x \in (2, 6] \), we need to check if \( -1 \) falls within this interval. It does not, so \( h(x) \) is valid for all \( x \) in \( (2, 6] \). ### Step 2: Analyze the conditions for \( g(x) \) The function \( g(x) = -x^2 + 1 \) is a polynomial and is defined for all real numbers. Therefore, \( g(x) \) is valid for \( x \leq 1 \). ### Step 3: Combine the intervals Now we combine the intervals where \( t(x) \) is defined: 1. From \( g(x) \): \( x \leq 1 \) gives us the interval \( (-\infty, 1] \). 2. From \( h(x) \): \( x \in (2, 6] \) gives us the interval \( (2, 6] \). ### Step 4: Determine the overall domain The overall domain of \( t \) is the union of the two intervals: \[ \text{Domain of } t = (-\infty, 1] \cup (2, 6] \] ### Conclusion Now, we can match this result with the provided options: (A) \( \mathrm{Dt}=(-\infty, 1] \cup(2,6) \) (B) \( \mathrm{Dt}=(-\infty, 6] \) (C) None of these (D) \( \mathrm{Dt}=(-\infty, 1) \cup[, 6] \) (E) \( \mathrm{Dt}=(-\infty, 1] \cup[2,6] \) The correct answer is: **(A) \( \mathrm{Dt}=(-\infty, 1] \cup(2,6) \)**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the domain of the function \( t \), we need to analyze each piece of the piecewise definition. For \( h(x) \), the function is defined for \( x \in (2, 6] \), while for \( g(x) \), the function is defined for \( x \leq 1 \). Therefore, combining these intervals, we can conclude that the domain of \( t \) is \( (-\infty, 1] \cup (2, 6] \). Now, let's verify the options. Option (A) \( \mathrm{Dt}=(-\infty, 1] \cup(2,6) \) perfectly matches our findings. So the answer is: **(A)** \( \mathrm{Dt}=(-\infty, 1] \cup(2, 6) \) If you have any questions about understanding piecewise functions or their domains, consider looking into graphical interpretations, as visualizing these functions can make identifying domains much easier! Also, check out some workbooks or online resources full of engaging problems that can help hone your skills in function analysis—you'll be amazed at how much fun math can be!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad