Question
upstudy study bank question image url

(d) \( \frac{3^{2} \times\left(p^{-2}\right)^{3} \times\left(q^{-1}\right)^{0} \times\left(p^{3}\right)^{-2}}{3^{-1} \times\left(p^{-1}\right)^{-1} \times\left(q^{5}\right)^{2}}(p \neq 0, q \neq 0) \)

Ask by Ray Ellis. in Malaysia
Jan 14,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{27}{q^{10}p^{13}} \).

Solution

Calculate or simplify the expression \( 3^{2} \times (p^{-2})^{3} \times (q^{-1})^{0} \times (p^{3})^{-2} / (3^{-1} \times (p^{-1})^{-1} \times (q^{5})^{2}) \). Simplify the expression by following steps: - step0: Solution: \(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}}{\left(3^{-1}\left(p^{-1}\right)^{-1}\left(q^{5}\right)^{2}\right)}\) - step1: Remove the parentheses: \(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}}{3^{-1}\left(p^{-1}\right)^{-1}\left(q^{5}\right)^{2}}\) - step2: Multiply by \(a^{-n}:\) \(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}\times 3}{\left(p^{-1}\right)^{-1}\left(q^{5}\right)^{2}}\) - step3: Multiply the exponents: \(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}\times 3}{\left(p^{-1}\right)^{-1}q^{5\times 2}}\) - step4: Multiply the exponents: \(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}\times 3}{p^{-\left(-1\right)}q^{5\times 2}}\) - step5: Multiply the exponents: \(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}p^{3\left(-2\right)}\times 3}{p^{-\left(-1\right)}q^{5\times 2}}\) - step6: Multiply by \(a^{-n}:\) \(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}p^{3\left(-2\right)}\times 3p^{1\times \left(-1\right)}}{q^{5\times 2}}\) - step7: Multiply the exponents: \(\frac{3^{2}p^{-2\times 3}\left(q^{-1}\right)^{0}p^{3\left(-2\right)}\times 3p^{1\times \left(-1\right)}}{q^{5\times 2}}\) - step8: Multiply the numbers: \(\frac{3^{2}p^{-6}\left(q^{-1}\right)^{0}p^{3\left(-2\right)}\times 3p^{1\times \left(-1\right)}}{q^{5\times 2}}\) - step9: Multiply the numbers: \(\frac{3^{2}p^{-6}\left(q^{-1}\right)^{0}p^{-6}\times 3p^{1\times \left(-1\right)}}{q^{5\times 2}}\) - step10: Calculate: \(\frac{3^{2}p^{-6}\left(q^{-1}\right)^{0}p^{-6}\times 3p^{-1}}{q^{5\times 2}}\) - step11: Evaluate the power: \(\frac{3^{2}p^{-6}\times 1\times p^{-6}\times 3p^{-1}}{q^{5\times 2}}\) - step12: Multiply the numbers: \(\frac{3^{2}p^{-6}\times 1\times p^{-6}\times 3p^{-1}}{q^{10}}\) - step13: Multiply the terms: \(\frac{3^{3}p^{-13}}{q^{10}}\) - step14: Rewrite the expression: \(\frac{\frac{3^{3}}{p^{13}}}{q^{10}}\) - step15: Simplify: \(\frac{3^{3}}{q^{10}p^{13}}\) - step16: Evaluate the power: \(\frac{27}{q^{10}p^{13}}\) The simplified expression is \( \frac{27}{q^{10}p^{13}} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's simplify the expression step by step. First, simplify each part of the numerator and denominator: Numerator: - \(3^{2} = 9\) - \((p^{-2})^{3} = p^{-6}\) - \((q^{-1})^{0} = 1\) (anything raised to the power of zero is 1) - \((p^{3})^{-2} = p^{-6}\) Combining these, we find the numerator becomes: \[ 9 \times p^{-6} \times 1 \times p^{-6} = 9 \times p^{-12} \] Denominator: - \(3^{-1} = \frac{1}{3}\) - \((p^{-1})^{-1} = p\) - \((q^{5})^{2} = q^{10}\) Thus, the denominator simplifies to: \[ \frac{1}{3} \times p \times q^{10} = \frac{p \times q^{10}}{3} \] Now, we can combine the numerator and denominator: \[ \frac{9 \times p^{-12}}{\frac{p \times q^{10}}{3}} = 9 \times p^{-12} \times \frac{3}{p \times q^{10}} = \frac{27}{p^{13} \times q^{10}} \] So, the simplified expression is: \[ \frac{27}{p^{13} \times q^{10}} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy