Answer
The simplified expression is \( \frac{27}{q^{10}p^{13}} \).
Solution
Calculate or simplify the expression \( 3^{2} \times (p^{-2})^{3} \times (q^{-1})^{0} \times (p^{3})^{-2} / (3^{-1} \times (p^{-1})^{-1} \times (q^{5})^{2}) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}}{\left(3^{-1}\left(p^{-1}\right)^{-1}\left(q^{5}\right)^{2}\right)}\)
- step1: Remove the parentheses:
\(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}}{3^{-1}\left(p^{-1}\right)^{-1}\left(q^{5}\right)^{2}}\)
- step2: Multiply by \(a^{-n}:\)
\(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}\times 3}{\left(p^{-1}\right)^{-1}\left(q^{5}\right)^{2}}\)
- step3: Multiply the exponents:
\(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}\times 3}{\left(p^{-1}\right)^{-1}q^{5\times 2}}\)
- step4: Multiply the exponents:
\(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}\left(p^{3}\right)^{-2}\times 3}{p^{-\left(-1\right)}q^{5\times 2}}\)
- step5: Multiply the exponents:
\(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}p^{3\left(-2\right)}\times 3}{p^{-\left(-1\right)}q^{5\times 2}}\)
- step6: Multiply by \(a^{-n}:\)
\(\frac{3^{2}\left(p^{-2}\right)^{3}\left(q^{-1}\right)^{0}p^{3\left(-2\right)}\times 3p^{1\times \left(-1\right)}}{q^{5\times 2}}\)
- step7: Multiply the exponents:
\(\frac{3^{2}p^{-2\times 3}\left(q^{-1}\right)^{0}p^{3\left(-2\right)}\times 3p^{1\times \left(-1\right)}}{q^{5\times 2}}\)
- step8: Multiply the numbers:
\(\frac{3^{2}p^{-6}\left(q^{-1}\right)^{0}p^{3\left(-2\right)}\times 3p^{1\times \left(-1\right)}}{q^{5\times 2}}\)
- step9: Multiply the numbers:
\(\frac{3^{2}p^{-6}\left(q^{-1}\right)^{0}p^{-6}\times 3p^{1\times \left(-1\right)}}{q^{5\times 2}}\)
- step10: Calculate:
\(\frac{3^{2}p^{-6}\left(q^{-1}\right)^{0}p^{-6}\times 3p^{-1}}{q^{5\times 2}}\)
- step11: Evaluate the power:
\(\frac{3^{2}p^{-6}\times 1\times p^{-6}\times 3p^{-1}}{q^{5\times 2}}\)
- step12: Multiply the numbers:
\(\frac{3^{2}p^{-6}\times 1\times p^{-6}\times 3p^{-1}}{q^{10}}\)
- step13: Multiply the terms:
\(\frac{3^{3}p^{-13}}{q^{10}}\)
- step14: Rewrite the expression:
\(\frac{\frac{3^{3}}{p^{13}}}{q^{10}}\)
- step15: Simplify:
\(\frac{3^{3}}{q^{10}p^{13}}\)
- step16: Evaluate the power:
\(\frac{27}{q^{10}p^{13}}\)
The simplified expression is \( \frac{27}{q^{10}p^{13}} \).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution