9. Nilai \( \frac{\sin 60^{\circ}-\tan 30^{\circ}}{\cos 45^{\circ}} \) adalah
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
Mari kita hitung nilai tersebut langkah demi langkah. Pertama, kita akan mencari nilai sin dan tan yang diperlukan: - \( \sin 60^{\circ} = \frac{\sqrt{3}}{2} \) - \( \tan 30^{\circ} = \frac{1}{\sqrt{3}} \) - \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \) Sekarang kita substitusi nilai-nilai tersebut ke dalam rumus: \[ \frac{\sin 60^{\circ} - \tan 30^{\circ}}{\cos 45^{\circ}} = \frac{\frac{\sqrt{3}}{2} - \frac{1}{\sqrt{3}}}{\frac{\sqrt{2}}{2}} \] Lanjutkan dengan menyederhanakan bagian atas: Pertama, cari nilai \( \frac{1}{\sqrt{3}} \) dengan penyamaan penyebut: \[ \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \] sehingga, \[ \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{3} \] Mencari penyebut yang sama, yaitu 6: \[ \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{6}, \quad \frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{6} \] Jadi, \[ \frac{3\sqrt{3}}{6} - \frac{2\sqrt{3}}{6} = \frac{\sqrt{3}}{6} \] Sekarang kita substitusi kembali ke dalam rumus: \[ \frac{\frac{\sqrt{3}}{6}}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{3}}{6} \times \frac{2}{\sqrt{2}} = \frac{2\sqrt{3}}{6\sqrt{2}} = \frac{\sqrt{3}}{3\sqrt{2}} = \frac{\sqrt{6}}{6} \] Maka, nilai dari \( \frac{\sin 60^{\circ} - \tan 30^{\circ}}{\cos 45^{\circ}} \) adalah \( \frac{\sqrt{6}}{6} \).