Question
upstudy study bank question image url

Fill in the blank to make equivalent rational expressions. \( \frac{3}{y^{4}}=\frac{\square}{2 y^{6}} \)

Ask by Franklin Howell. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The blank should be filled with \( 6y^{2} \).

Solution

We want to find a number (or expression) in the blank such that   3/y⁴ = (□)/(2y⁶). Step 1: Start with the equation   3/y⁴ = N/(2y⁶)         (where N is the expression in the blank) Step 2: Multiply both sides of the equation by 2y⁶ to solve for N:   N = (3/y⁴) × (2y⁶). Step 3: Simplify the expression:   N = 6y^(6-4) = 6y². Therefore, the rational expression that is equivalent is   3/y⁴ = (6y²)/(2y⁶). So, the blank should be filled with 6y².

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To create equivalent rational expressions, you can cross-multiply. The equation \( \frac{3}{y^{4}}=\frac{\square}{2 y^{6}} \) means you can set up the equation: \( 3 \cdot 2 y^{6} = \square \cdot y^{4} \). This simplifies to \( 6y^{6} = \square \cdot y^{4} \). Now, divide both sides by \( y^{4} \) (assuming \( y \neq 0 \)): \(\square = 6y^{2}.\) So the expression is \( \frac{3}{y^{4}}=\frac{6y^{2}}{2y^{6}} \). Don't forget, when working with rational expressions, ensure that you're upholding any restrictions on variables to avoid division by zero!

Related Questions

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Algebra Mexico Feb 26, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy