Question
upstudy study bank question image url

20. \( -5 x(-2 x y z)^{0} \) 21. \( \frac{7 a^{2} b^{-3} \times 3 a^{-3} b^{0}}{14 a^{-1} b} \) 22. \( \frac{16 a b^{-2} \times 125 a^{-1} b^{3}}{80 a^{2} b^{5}} \) 23. \( 5\left(2 p q^{3}\right)\left(3 p q^{-2}\right) \) 24. \( \sqrt{5 a p^{2}} \times \sqrt{20 a^{3}} \) 25. \( \frac{8 x^{2} y^{-1} \times 3 x^{3} y^{-5}}{} \)

Ask by Schwartz Macdonald. in South Africa
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each expression: 20. \( -5x \) 21. \( \frac{3}{2b^{4}} \) 22. \( \frac{25}{a^{2}b^{4}} \) 23. \( 30p^{2}q \) 24. \( 10pa^{2} \) 25. \( \frac{24x^{5}}{y^{6}} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\left(8x^{2}y^{-1}\times 3x^{3}y^{-5}\right)\) - step1: Evaluate: \(8x^{2}y^{-1}\times 3x^{3}y^{-5}\) - step2: Multiply the terms: \(24x^{2}y^{-1}x^{3}y^{-5}\) - step3: Multiply the terms: \(24x^{2+3}y^{-1}\times y^{-5}\) - step4: Add the numbers: \(24x^{5}y^{-1}\times y^{-5}\) - step5: Multiply the terms: \(24x^{5}y^{-1-5}\) - step6: Subtract the numbers: \(24x^{5}y^{-6}\) - step7: Simplify: \(\frac{24x^{5}}{y^{6}}\) Calculate or simplify the expression \( 5 * (2 * p * q^{3}) * (3 * p * q^{-2}) \). Simplify the expression by following steps: - step0: Solution: \(5\left(2pq^{3}\right)\left(3pq^{-2}\right)\) - step1: Evaluate: \(5\times 2pq^{3}\left(3pq^{-2}\right)\) - step2: Remove the parentheses: \(5\times 2pq^{3}\times 3pq^{-2}\) - step3: Multiply the terms: \(30pq^{3}pq^{-2}\) - step4: Multiply the terms: \(30p^{2}q^{3}\times q^{-2}\) - step5: Multiply the terms: \(30p^{2}q^{3-2}\) - step6: Subtract the numbers: \(30p^{2}q\) Calculate or simplify the expression \( -5 * x * (-2 * x * y * z)^{0} \). Simplify the expression by following steps: - step0: Solution: \(-5x\left(-2xyz\right)^{0}\) - step1: Multiply the terms: \(-5x\) Calculate or simplify the expression \( (16 * a * b^{-2} * 125 * a^{-1} * b^{3}) / (80 * a^{2} * b^{5}) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(16ab^{-2}\times 125a^{-1}b^{3}\right)}{\left(80a^{2}b^{5}\right)}\) - step1: Evaluate: \(\frac{\left(16ab^{-2}\times 125a^{-1}b^{3}\right)}{80a^{2}b^{5}}\) - step2: Remove the parentheses: \(\frac{16ab^{-2}\times 125a^{-1}b^{3}}{80a^{2}b^{5}}\) - step3: Multiply: \(\frac{2000b}{80a^{2}b^{5}}\) - step4: Reduce the fraction: \(\frac{25}{a^{2}b^{4}}\) Calculate or simplify the expression \( \sqrt(5 * a * p^{2}) * \sqrt(20 * a^{3}) \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{5ap^{2}}\times \sqrt{20a^{3}}\) - step1: Simplify the root: \(p\sqrt{5a}\times \sqrt{20a^{3}}\) - step2: Simplify the root: \(p\sqrt{5a}\times 2a\sqrt{5a}\) - step3: Calculate: \(p\times 2a\times 5a\) - step4: Multiply the terms: \(10pa\times a\) - step5: Multiply the terms: \(10pa^{2}\) Calculate or simplify the expression \( (7 * a^{2} * b^{-3} * 3 * a^{-3} * b^{0}) / (14 * a^{-1} * b) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(7a^{2}b^{-3}\times 3a^{-3}b^{0}\right)}{\left(14a^{-1}b\right)}\) - step1: Remove the parentheses: \(\frac{7a^{2}b^{-3}\times 3a^{-3}b^{0}}{14a^{-1}b}\) - step2: Multiply by \(a^{-n}:\) \(\frac{7a^{2}b^{-3}\times 3a^{-3}b^{0}ab^{-1}}{14}\) - step3: Evaluate the power: \(\frac{7a^{2}b^{-3}\times 3a^{-3}\times 1\times ab^{-1}}{14}\) - step4: Calculate: \(\frac{7a^{2}b^{-3}\times 3a^{-3}\times ab^{-1}}{14}\) - step5: Multiply: \(\frac{21b^{-4}}{14}\) - step6: Reduce the fraction: \(\frac{3b^{-4}}{2}\) - step7: Rewrite the expression: \(\frac{\frac{3}{b^{4}}}{2}\) - step8: Simplify: \(\frac{3}{2b^{4}}\) Here are the simplified results for each expression: 20. For the expression \( -5 x(-2 x y z)^{0} \): - Since any non-zero number raised to the power of 0 is 1, we have: \[ -5 x(-2 x y z)^{0} = -5 x \cdot 1 = -5x \] 21. For the expression \( \frac{7 a^{2} b^{-3} \times 3 a^{-3} b^{0}}{14 a^{-1} b} \): - First, simplify the numerator: \[ 7 a^{2} b^{-3} \times 3 a^{-3} b^{0} = 21 a^{2 - 3} b^{-3 + 0} = 21 a^{-1} b^{-3} \] - Now, simplify the entire expression: \[ \frac{21 a^{-1} b^{-3}}{14 a^{-1} b} = \frac{21}{14} \cdot \frac{a^{-1}}{a^{-1}} \cdot \frac{b^{-3}}{b} = \frac{3}{2b^{4}} \] 22. For the expression \( \frac{16 a b^{-2} \times 125 a^{-1} b^{3}}{80 a^{2} b^{5}} \): - Simplifying the numerator: \[ 16 a b^{-2} \times 125 a^{-1} b^{3} = 2000 a^{1 - 1} b^{-2 + 3} = 2000 b^{1} \] - Now, simplify the entire expression: \[ \frac{2000 b}{80 a^{2} b^{5}} = \frac{2000}{80} \cdot \frac{b^{1}}{b^{5}} = \frac{25}{a^{2}b^{4}} \] 23. For the expression \( 5\left(2 p q^{3}\right)\left(3 p q^{-2}\right) \): - Simplifying: \[ 5 \cdot 2 p q^{3} \cdot 3 p q^{-2} = 30 p^{1 + 1} q^{3 - 2} = 30 p^{2} q \] 24. For the expression \( \sqrt{5 a p^{2}} \times \sqrt{20 a^{3}} \): - Using the property of square roots: \[ \sqrt{5 a p^{2} \times 20 a^{3}} = \sqrt{100 a^{4} p^{2}} = 10 a^{2} p \] 25. For the expression \( \frac{8 x^{2} y^{-1} \times 3 x^{3} y^{-5}}{} \): - Simplifying the numerator: \[ 8 x^{2} y^{-1} \times 3 x^{3} y^{-5} = 24 x^{2 + 3} y^{-1 - 5} = 24 x^{5} y^{-6} \] - Since there is no denominator, the result is: \[ \frac{24 x^{5}}{y^{6}} \] In summary, the simplified results are: - 20: \( -5x \) - 21: \( \frac{3}{2b^{4}} \) - 22: \( \frac{25}{a^{2}b^{4}} \) - 23: \( 30p^{2}q \) - 24: \( 10pa^{2} \) - 25: \( \frac{24x^{5}}{y^{6}} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's start with an engaging tidbit: Did you know that the concept of exponents dates back to ancient civilizations? The Babylonians were already utilizing early forms of exponential notation as far back as 2000 BC! They weren't using letters like we do now, but their methods for calculations laid the groundwork for what would eventually evolve into modern algebra. And here's a fun puzzle for you: When simplifying fractions like the ones in your equations, remember that adding and subtracting exponents isn't as tricky as it seems! A common mistake is misapplying the laws, such as mixing up multiplication with addition. Always keep in mind that in multiplication you add exponents, while in division you subtract them—this little tip can save you a lot of time and frustration!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy