Question
upstudy study bank question image url

Find the arc length of the following curve on the given interval. \( y=\frac{1}{3} x^{3 / 2} \) on \( [0,42] \) The length of the curve is (Type an integer or decimal rounded to two decimal places as needed.)

Ask by Chavez Reeves. in the United States
Mar 07,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The arc length of the curve \( y = \frac{1}{3} x^{\frac{3}{2}} \) from \( x=0 \) to \( x=42 \) is approximately **101.33**.

Solution

We want to compute the arc length of the curve \[ y = \frac{1}{3} x^{\frac{3}{2}} \] on the interval \([0,42]\). ### Step 1. Formula for Arc Length The arc length \( L \) of a curve \( y = f(x) \) from \( x=a \) to \( x=b \) is given by: \[ L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}\, dx. \] ### Step 2. Compute the Derivative Given \[ y = \frac{1}{3} x^{\frac{3}{2}}, \] differentiate with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{3} \cdot \frac{3}{2} x^{\frac{1}{2}} = \frac{1}{2} x^{\frac{1}{2}}. \] Then, square the derivative: \[ \left(\frac{dy}{dx}\right)^2 = \left(\frac{1}{2} x^{\frac{1}{2}}\right)^2 = \frac{1}{4} x. \] ### Step 3. Set Up the Integral Substitute into the arc length formula: \[ L = \int_{0}^{42} \sqrt{1 + \frac{1}{4}x}\, dx. \] ### Step 4. Use a Substitution Let \[ u = 1 + \frac{x}{4}. \] Then the derivative of \( u \) with respect to \( x \) is: \[ \frac{du}{dx} = \frac{1}{4} \quad \Longrightarrow \quad dx = 4\, du. \] Determine the new limits: - When \( x = 0 \), \( u = 1 + \frac{0}{4} = 1 \). - When \( x = 42 \), \( u = 1 + \frac{42}{4} = 1 + 10.5 = 11.5 \). Now, the integral becomes: \[ L = \int_{u=1}^{u=11.5} \sqrt{u} \cdot 4\, du = 4 \int_{1}^{11.5} u^{\frac{1}{2}}\, du. \] ### Step 5. Evaluate the Integral Integrate: \[ \int u^{\frac{1}{2}}\, du = \frac{2}{3} u^{\frac{3}{2}}. \] Thus, we have: \[ L = 4 \cdot \frac{2}{3} \left[u^{\frac{3}{2}}\right]_{1}^{11.5} = \frac{8}{3} \left( 11.5^{\frac{3}{2}} - 1^{\frac{3}{2}} \right). \] Since \( 1^{\frac{3}{2}} = 1 \), this simplifies to: \[ L = \frac{8}{3} \left( 11.5^{\frac{3}{2}} - 1 \right). \] ### Step 6. Compute the Numerical Value First, calculate \( 11.5^{\frac{3}{2}} \): \[ 11.5^{\frac{3}{2}} = \left(\sqrt{11.5}\right)^3. \] Using a calculator, \[ \sqrt{11.5} \approx 3.39116, \] so, \[ 11.5^{\frac{3}{2}} \approx 3.39116^3 \approx 39.00 \quad (\text{rounded}). \] Now, plug back into the formula: \[ L \approx \frac{8}{3} (39.00 - 1) = \frac{8}{3} \times 38.00. \] Multiply: \[ \frac{8 \times 38.00}{3} = \frac{304.00}{3} \approx 101.33. \] ### Final Answer The length of the curve is approximately: \[ \boxed{101.33}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To find the arc length of the curve \( y = \frac{1}{3} x^{3/2} \) on the interval \([0, 42]\), we use the arc length formula: \[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] First, calculate the derivative: \[ \frac{dy}{dx} = \frac{1}{3} \cdot \frac{3}{2} x^{1/2} = \frac{1}{2} x^{1/2} \] Next, we find \( \left( \frac{dy}{dx} \right)^2 \): \[ \left( \frac{dy}{dx} \right)^2 = \left( \frac{1}{2} x^{1/2} \right)^2 = \frac{1}{4} x \] Now, substitute this into the arc length formula: \[ L = \int_{0}^{42} \sqrt{1 + \frac{1}{4} x} \, dx \] To solve the integral, simplify the expression under the square root: \[ L = \int_{0}^{42} \sqrt{\frac{4 + x}{4}} \, dx = \int_{0}^{42} \frac{\sqrt{4 + x}}{2} \, dx \] Now, factor out the constant: \[ L = \frac{1}{2} \int_{0}^{42} \sqrt{4 + x} \, dx \] To evaluate this integral, we use the substitution \( u = 4 + x \) which gives \( du = dx \) and changes the limits from \( x=0 \) to \( u=4 \) and from \( x=42 \) to \( u=46 \). Thus, we have: \[ L = \frac{1}{2} \int_{4}^{46} \sqrt{u} \, du \] This integrates to: \[ \int \sqrt{u} \, du = \frac{2}{3} u^{3/2} \] Evaluating from 4 to 46, we get: \[ \frac{1}{2} \cdot \frac{2}{3} \left[ 46^{3/2} - 4^{3/2} \right] = \frac{1}{3} \left[ 46^{3/2} - 8 \right] \] Calculating \( 46^{3/2} = 46 \cdot \sqrt{46} \approx 316.227 \). Therefore: \[ L \approx \frac{1}{3} \left[ 316.227 - 8 \right] \approx \frac{1}{3} \cdot 308.227 \approx 102.742 \] Rounding to two decimal places, the length of the curve is approximately: \[ \boxed{102.74} \]

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy