Find the arc length of the following curve on the given interval. \( y=\frac{1}{3} x^{3 / 2} \) on \( [0,42] \) The length of the curve is (Type an integer or decimal rounded to two decimal places as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the arc length of the curve \( y = \frac{1}{3} x^{3/2} \) on the interval \([0, 42]\), we use the arc length formula: \[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] First, calculate the derivative: \[ \frac{dy}{dx} = \frac{1}{3} \cdot \frac{3}{2} x^{1/2} = \frac{1}{2} x^{1/2} \] Next, we find \( \left( \frac{dy}{dx} \right)^2 \): \[ \left( \frac{dy}{dx} \right)^2 = \left( \frac{1}{2} x^{1/2} \right)^2 = \frac{1}{4} x \] Now, substitute this into the arc length formula: \[ L = \int_{0}^{42} \sqrt{1 + \frac{1}{4} x} \, dx \] To solve the integral, simplify the expression under the square root: \[ L = \int_{0}^{42} \sqrt{\frac{4 + x}{4}} \, dx = \int_{0}^{42} \frac{\sqrt{4 + x}}{2} \, dx \] Now, factor out the constant: \[ L = \frac{1}{2} \int_{0}^{42} \sqrt{4 + x} \, dx \] To evaluate this integral, we use the substitution \( u = 4 + x \) which gives \( du = dx \) and changes the limits from \( x=0 \) to \( u=4 \) and from \( x=42 \) to \( u=46 \). Thus, we have: \[ L = \frac{1}{2} \int_{4}^{46} \sqrt{u} \, du \] This integrates to: \[ \int \sqrt{u} \, du = \frac{2}{3} u^{3/2} \] Evaluating from 4 to 46, we get: \[ \frac{1}{2} \cdot \frac{2}{3} \left[ 46^{3/2} - 4^{3/2} \right] = \frac{1}{3} \left[ 46^{3/2} - 8 \right] \] Calculating \( 46^{3/2} = 46 \cdot \sqrt{46} \approx 316.227 \). Therefore: \[ L \approx \frac{1}{3} \left[ 316.227 - 8 \right] \approx \frac{1}{3} \cdot 308.227 \approx 102.742 \] Rounding to two decimal places, the length of the curve is approximately: \[ \boxed{102.74} \]
preguntas relacionadas
