Question
upstudy study bank question image url

Which student used the commutative property and the associative property to correctly simplify the expression? \[ \begin{array}{l}\text { Maria: } 20(17 \cdot 5) \\ \text { Carly: } 20(17 \cdot 5)=20(85)=1700 \\ \text { Sing: } 20(17 \cdot 5)=20(85)=20(80+5)=1600+100=1700 \\ \text { None of these students used the commutative property and the associative property to correctly } \\ \text { simplify the expression. }\end{array} \]

Ask by Ramirez Christensen. in Brazil
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Carly e Sing usaram a propriedade comutativa e a propriedade associativa para simplificar a expressão corretamente.

Solution

Para simplificar a expressão \(20(17 \cdot 5)\) usando a propriedade comutativa e a propriedade associativa, precisamos aplicar essas propriedades de forma correta. A propriedade comutativa diz que o ordenamento dos fatores não altera o resultado da multiplicação. A propriedade associativa diz que a ordem em que multiplicamos os fatores não altera o resultado. Vamos analisar as respostas das estudantes: 1. Maria: \(20(17 \cdot 5)\) - Maria não aplicou a propriedade comutativa e a propriedade associativa corretamente. 2. Carly: \(20(17 \cdot 5) = 20(85) = 1700\) - Carly aplicou a propriedade comutativa e a propriedade associativa corretamente. 3. Sing: \(20(17 \cdot 5) = 20(85) = 20(80+5) = 1600+100 = 1700\) - Sing aplicou a propriedade comutativa e a propriedade associativa corretamente. Portanto, as estudantes Carly e Sing usaram a propriedade comutativa e a propriedade associativa para simplificar a expressão corretamente.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Carly correctly simplified the expression by applying numerical multiplication, but she didn’t explicitly mention using the commutative or associative properties. In contrast, Sing creatively breaks down \( 20(85) \) into \( 20(80 + 5) \) using association and distribution which helps in understanding how numbers can be rearranged and grouped for easier calculation. This shows that while both arrived at the same answer, Sing's method explicitly demonstrates these properties. To give a little extra flair to the math magic here, remember that the commutative property lets you swap numbers around—like flipping cards in a game—while the associative property lets you group terms however you like, making math feel a bit like a puzzle! It's all about finding that perfect play to simplify your moves.

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy