Question

(b) \( \frac{25^{n} \cdot 15^{n-1} \cdot 3^{n}}{125^{n} \cdot 9^{n-1}} \)

Ask by Fuentes Ortiz. in South Africa
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The simplified form of the expression is \( \frac{3}{5} \) or 0.6.

Solution

Calculate or simplify the expression \( \frac{25^{n} \cdot 15^{n-1} \cdot 3^{n}}{125^{n} \cdot 9^{n-1}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{25^{n}\times 15^{n-1}\times 3^{n}}{125^{n}\times 9^{n-1}}\) - step1: Factor the expression: \(\frac{5^{2n}\times 15^{n-1}\times 3^{n}}{5^{3n}\times 9^{n-1}}\) - step2: Reduce the fraction: \(\frac{15^{n-1}\times 3^{n}}{5^{n}\times 9^{n-1}}\) - step3: Factor the expression: \(\frac{5^{n-1}\times 3^{n-1}\times 3^{n}}{5^{n}\times 9^{n-1}}\) - step4: Reduce the fraction: \(\frac{3^{n-1}\times 3^{n}}{5\times 9^{n-1}}\) - step5: Factor the expression: \(\frac{3^{n-1}\times 3^{n}}{5\times 3^{2n-2}}\) - step6: Reduce the fraction: \(\frac{3}{5}\) The simplified form of the expression \( \frac{25^{n} \cdot 15^{n-1} \cdot 3^{n}}{125^{n} \cdot 9^{n-1}} \) is \( \frac{3}{5} \) or 0.6.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To simplify the expression \( \frac{25^{n} \cdot 15^{n-1} \cdot 3^{n}}{125^{n} \cdot 9^{n-1}} \), we can rewrite each of the bases in terms of their prime factors: - \( 25 = 5^2 \) so \( 25^n = (5^2)^n = 5^{2n} \) - \( 15 = 3 \cdot 5 \) so \( 15^{n-1} = (3 \cdot 5)^{n-1} = 3^{n-1} \cdot 5^{n-1} \) - \( 3^{n} \) remains as is. - \( 125 = 5^3 \) so \( 125^n = (5^3)^n = 5^{3n} \) - \( 9 = 3^2 \) so \( 9^{n-1} = (3^2)^{n-1} = 3^{2(n-1)} = 3^{2n-2} \) Now substituting these into the expression, we have: \[ \frac{5^{2n} \cdot (3^{n-1} \cdot 5^{n-1}) \cdot 3^{n}}{5^{3n} \cdot 3^{2n-2}} \] This simplifies to: \[ \frac{5^{2n} \cdot 3^{n-1} \cdot 5^{n-1} \cdot 3^{n}}{5^{3n} \cdot 3^{2n-2}} = \frac{5^{2n+n-1} \cdot 3^{n+n-1}}{5^{3n} \cdot 3^{2n-2}} = \frac{5^{3n-1} \cdot 3^{2n-1}}{5^{3n} \cdot 3^{2n-2}} \] Combining the powers of the bases gives us: \[ = \frac{5^{3n-1-3n} \cdot 3^{2n-1-(2n-2)}} = \frac{5^{-1} \cdot 3^{1}}{1} = \frac{3}{5} \] Thus, the simplified expression is: \[ \frac{3}{5} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy